Skip to main content

Efficiency of Constructed Wetland Microcosms (CWMs) for the Treatment of Domestic Wastewater Using Aquatic Macrophytes

  • Chapter
  • First Online:
Book cover Environmental Biotechnology: For Sustainable Future

Abstract

Constructed wetland microcosms (CWMs) are engineered wastewater treatment systems that are designed to treat wastewater from small communities, involving aquatic plants, a variety of substrate materials, soils and their associated microbial fauna. CWMs are considered as promising ecological technology that requires low or no energy input, low operational cost and provides more benefits and better alternative to conventional wastewater treatment systems. In CWMs dissolved oxygen (DO), pH and temperature are controlled to achieve the desirable treatment efficiency. Several other components such as plant, substrate, water depth, hydraulic loading rates (HLRs) and hydraulic retention time (HRT) are also critical to establishing viable CWMs for the better performance. The literature on CWMs suggests excellent nutrient removal performances which are achieved with low and stable effluent concentrations. Further, the choice of appropriate macrophyte species having high uptake of pollutants and high pollutant tolerance and choice of substrate materials are critical for treatment performance. CWMs can be differentiated based on existing native vegetation type (such as floating leaved macrophytes, free-floating macrophytes, emergent macrophytes and submerged macrophytes, in which emergent macrophytes are common) and, hydrology (surface flow constructed wetlands (SFCWs), subsurface flow constructed wetlands (SSFCWs) and hybrid systems). The focus of this paper is to review the state of the art in improving the overall efficiency of CWMs for wastewater treatment. The paper documents both the design and operation of CWMs which are critically dependent on environmental, operational and hydraulic factors. It further outlines key challenges and future prospects for their wider replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Elela, S. I., Elekhnawy, M. A., Khalil, M. T., & Hellal, M. S. (2017). Factors affecting the performance of horizontal flow constructed treatment wetland vegetated with Cyperus papyrus for municipal wastewater treatment. International Journal of Phytoremediation, 19(11), 1023–1028.

    Article  CAS  Google Scholar 

  • Adrados, B., Sánchez, O., Arias, C. A., Becares, E., Garrido, L., Mas, J., Brix, H., & Morató, J. (2014). Microbial communities from different types of natural wastewater treatment systems: Vertical and horizontal flow constructed wetlands and biofilters. Water Research, 55, 304–312.

    Article  CAS  Google Scholar 

  • Akratos, C. S., Papaspyros, J. N., & Tsihrintzis, V. A. (2009). Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation. Bioresource Technology, 100, 586–596.

    Article  CAS  Google Scholar 

  • Ann, Y., Reddy, K. R., & Delfino, J. J. (1999). Influence of chemicals amendments on phosphorus immobilization in soils from a constructed wetland. Ecological Engineering, 14, 157–167.

    Article  Google Scholar 

  • Ávila, C., Salas, J. J., Martín, I., Aragón, C., & García, J. (2013). Integrated treatment of combined sewer wastewater and storm water in a hybrid constructed wetland system in southern Spain and its further reuse. Ecological Engineering, 50, 13–20.

    Article  Google Scholar 

  • Ávila, C., Matamoros, V., Reyes-Contreras, C., Piña, B., Casado, M., Mita, L., Rivetti, C., Barata, C., García, J., & Bayona, J. M. (2014). Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. The Science of the Total Environment, 470, 1272–1280.

    Article  CAS  Google Scholar 

  • Babatunde, A. O., Zhao, Y. Q., & Zhao, X. H. (2010). Alum sludge-based constructed wetland system for enhanced removal of P and OM from wastewater: Concept, design and performance analysis. Bioresource Technology, 101(16), 6576–6579.

    Article  CAS  Google Scholar 

  • Badhe, N., Saha, S., Biswas, R., & Nandy, T. (2014). Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland. Bioresource Technology, 169, 596–604.

    Article  CAS  Google Scholar 

  • Barca, C., Meyer, D., Liira, M., Drissen, P., Comeau, Y., Andrès, Y., & Chazarenc, F. (2014). Steel slag filters to upgrade phosphorus removal in small wastewater treatment plants: Removal mechanisms and performance. Ecological Engineering, 68, 214–222.

    Article  Google Scholar 

  • Bohórquez, E., Paredes, D., & Arias, C. A. (2017). Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: Effect of different design and operational parameters. Environmental Technology, 38, 199–208.

    Article  CAS  Google Scholar 

  • Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H., Van Vuuren, D. P., Willems, J., Rufino, M. C., & Stehfest, E. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 periods. In Proceedings of the National Academy of Sciences (Vol. 110, pp. 20882–20887).

    Google Scholar 

  • Bruch, I., Fritsche, J., Bänninger, D., Alewell, U., Sendelov, M., Hürlimann, H., Hasselbach, R., & Alewell, C. (2011). Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresource Technology, 102, 937–941.

    Article  CAS  Google Scholar 

  • Butterworth, E., Richards, A., Jones, M., Mansi, G., Ranieri, E., Dotro, G., & Jefferson, B. (2016). Performance of four full-scale artificially aerated horizontal flow constructed wetlands for domestic wastewater treatment. Water, 8, 365.

    Article  CAS  Google Scholar 

  • Button, M., Nivala, J., Weber, K. P., Aubron, T., & Müller, R. A. (2015). Microbial community metabolic function in subsurface flow constructed wetlands of different designs. Ecological Engineering, 80, 162–171.

    Article  Google Scholar 

  • Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2008). Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation. Bioresource Technology, 99, 6866–6877.

    Article  CAS  Google Scholar 

  • Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2009). Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresource Technology, 100, 3205–3213.

    Article  CAS  Google Scholar 

  • Chen, Y., Wen, Y., Zhou, Q., & Vymazal, J. (2014). Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: A stable isotope and mass balance assessment. Water Research, 63, 158–167.

    Article  CAS  Google Scholar 

  • Chong, H. L. H., Chia, P. S., & Ahmad, M. N. (2013). The adsorption of heavy metal by Bornean oil palm shell and its potential application as constructed wetland media. Bioresource Technology, 130, 181–186.

    Article  CAS  Google Scholar 

  • Cooper, P. F., Job, G. D., Green, M. B., & Shutes, R. B. E. (1997). Reed beds and constructed wetlands for wastewater treatment. European Water Pollution Control, 6, 49.

    Google Scholar 

  • Cui, L., Ouyang, Y., Lou, Q., Yang, F., Chen, Y., Zhu, W., & Luo, S. (2010). Removal of nutrients from wastewater with Canna indica L. Under different vertical-flow constructed wetland conditions. Ecological Engineering, 36, 1083–1088.

    Article  Google Scholar 

  • Dong, X., & Reddy, G. B. (2010). Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresource Technology, 101, 1175–1182.

    Article  CAS  Google Scholar 

  • Drizo, A. F. C. A., Frost, C. A., Smith, K. A., & Grace, J. (1997). Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Science and Technology, 35, 95–102.

    Article  CAS  Google Scholar 

  • Dzakpasu, M., Scholz, M., McCarthy, V., & Jordan, S. N. (2015). Assessment of long-term phosphorus retention in an integrated constructed wetland treating domestic wastewater. Environmental Science and Pollution Research, 22, 305–313.

    Article  CAS  Google Scholar 

  • Elfanssi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2017). Phytoremediation of domestic wastewater using a hybrid constructed wetlands in mountainous rural area. International Journal of Phytoremediation, 20(1), 75–87.

    Article  CAS  Google Scholar 

  • Elsaesser, D., Blankenberg, A. G. B., Geist, A., Mæhlum, T., & Schulz, R. (2011). Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: Application of the toxic units approach. Ecological Engineering, 37, 955–962.

    Article  Google Scholar 

  • Fan, J., Wang, W., Zhang, B., Guo, Y., Ngo, H. H., Guo, W., Zhang, J., & Wu, H. (2013). Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios. Bioresource Technology, 143, 461–466.

    Article  CAS  Google Scholar 

  • Fan, J., Zhang, J., Guo, W., Liang, S., & Wu, H. (2016). Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands. Bioresource Technology, 214, 871–875.

    Article  CAS  Google Scholar 

  • Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., Camper, A. K., & Stein, O. R. (2009). Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering, 35, 987–1004.

    Article  Google Scholar 

  • Foladori, P., Ruaben, J., & Ortigara, A. R. (2013). Recirculation or artificial aeration in vertical flow constructed wetlands: A comparative study for treating high load wastewater. Bioresource Technology, 149, 398–405.

    Article  CAS  Google Scholar 

  • Fountoulakis, M. S., Sabathianakis, G., Kritsotakis, I., Kabourakis, E. M., & Manios, T. (2017). Halophytes as vertical-flow constructed wetland vegetation for domestic wastewater treatment. The Science of the Total Environment, 583, 432–439.

    Article  CAS  Google Scholar 

  • Garcia, J., Rousseau, D. P., Morato, J., Lesage, E. L. S., Matamoros, V., & Bayona, J. M. (2010). Contaminant removal processes in subsurface-flow constructed wetlands: A review. Critical Reviews in Environmental Science and Technology, 40, 561–661.

    Article  CAS  Google Scholar 

  • Ge, Y., Wang, X., Zheng, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Environmental Science and Pollution Research, 22, 12982–12991.

    Article  CAS  Google Scholar 

  • Geng, Y., Han, W., Yu, C., Jiang, Q., Wu, J., Chang, J., & Ge, Y. (2017). Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecological Engineering, 107, 110–119.

    Article  Google Scholar 

  • Giaramida, L., Manage, P. M., Edwards, C., Singh, B. K., & Lawton, L. A. (2013). Bacterial communities’ response to microcystins exposure and nutrient availability: Linking degradation capacity to community structure. International Biodeterioration and Biodegradation, 84, 111–117.

    Article  CAS  Google Scholar 

  • Guo, C., Cui, Y., Dong, B., Luo, Y., Liu, F., Zhao, S., & Wu, H. (2017). Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland. Bioresource Technology, 238, 461–471.

    Article  CAS  Google Scholar 

  • Han, W., Chang, J., Fan, X., Du, Y., Chang, S. X., Zhang, C., & Ge, Y. (2016). Plant species diversity impacts nitrogen removal and nitrous oxide emissions as much as carbon addition in constructed wetland microcosms. Ecological Engineering, 93, 144–151.

    Article  Google Scholar 

  • Haynes, R. J. (2015). Use of industrial wastes as media in constructed wetlands and filter beds—prospects for removal of phosphate and metals from wastewater streams. Critical Reviews in Environmental Science and Technology, 45, 1041–1103.

    Article  CAS  Google Scholar 

  • Headley, T., Nivala, J., Kassa, K., Olsson, L., Wallace, S., Brix, H., van Afferden, M., & Müller, R. (2013). Escherichia coli removal and internal dynamics in subsurface flow eco-technologies: Effects of design and plants. Ecological Engineering, 61, 564–574.

    Article  Google Scholar 

  • Iasur-Kruh, L., Hadar, Y., Milstein, D., Gasith, A., & Minz, D. (2010). Microbial population and activity in wetland microcosms constructed for improving treated municipal wastewater. Microbial Ecology, 59, 700–709.

    Article  Google Scholar 

  • Istenic, D., Bodík, I., & Bulc, T. (2015). Status of decentralised wastewater treatment systems and barriers for implementation of nature-based systems in central and eastern Europe. Environmental Science and Pollution Research, 22, 12879–12884.

    Article  Google Scholar 

  • Jiang, Y., Sun, Y., Pan, J., Qi, S., Chen, Q., & Tong, D. (2017). Nitrogen removal and N2O emission in subsurface wastewater infiltration systems with/without intermittent aeration under different organic loading rates. Bioresource Technology, 244, 8–14.

    Article  CAS  Google Scholar 

  • Kadlec, R. H. (2009). Comparison of free water and horizontal subsurface flow treatment wetlands. Ecological Engineering, 35, 159–174.

    Article  Google Scholar 

  • Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Khan, S., Ahmad, I., Shah, M. T., Rehman, S., & Khaliq, A. (2009). Use of constructed wetland for the removal of heavy metals from industrial wastewater. Journal of Environmental Management, 90, 3451–3457.

    Article  CAS  Google Scholar 

  • Kumari, M., & Tripathi, B. D. (2014). Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecological Engineering, 62, 48–53.

    Article  Google Scholar 

  • Ladu, J. L. C., Loboka, M. K., & Lukaw, Y. S. (2012). Integrated constructed wetland for nitrogen elimination from domestic sewage: The case study of Soba rural area in Khartoum South, Sudan. Natural Science, 10, 30–36.

    Google Scholar 

  • Li, L., Li, Y., Biswas, D. K., Nian, Y., & Jiang, G. (2008). Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology, 99, 1656–1663.

    Article  CAS  Google Scholar 

  • Li, C. J., Wan, M. H., Dong, Y., Men, Z. Y., Lin, Y., Wu, D. Y., & Kong, H. N. (2011). Treating surface water with low nutrients concentration by mixed substrates constructed wetlands. Journal of Environment Science and Health Part A, 46, 771–776.

    Article  CAS  Google Scholar 

  • Li, F., Lu, L., Zheng, X., Ngo, H. H., Liang, S., Guo, W., & Zhang, X. (2014). Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding. Bioresource Technology, 169, 395–402.

    Article  CAS  Google Scholar 

  • Li, M., Wu, H., Zhang, J., Ngo, H. H., Guo, W., & Kong, Q. (2017). Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios. Bioresource Technology, 240, 157–164.

    Article  CAS  Google Scholar 

  • Liu, R., Zhao, Y., Doherty, L., Hu, Y., & Hao, X. (2015). A review of incorporation of constructed wetland with other treatment processes. Chemical Engineering Journal, 279, 220–230.

    Article  CAS  Google Scholar 

  • Lv, T., Zhang, Y., Carvalho, P. N., Zhang, L., Button, M., Arias, C. A., Weber, K. P., & Brix, H. (2017). Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 98, 378–387.

    Article  Google Scholar 

  • Machado, A. I., Beretta, M., Fragoso, R., & Duarte, E. (2017). Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Journal of Environment Management, 187, 560–570.

    Article  CAS  Google Scholar 

  • Maine, M. A., Hadad, H. R., Sánchez, G. C., Di Luca, G. A., Mufarrege, M. M., Caffaratti, S. E., & Pedro, M. C. (2017). Long-term performance of two free-water surface wetlands for metallurgical effluent treatment. Ecological Engineering, 98, 372–377.

    Article  Google Scholar 

  • Melián, J. H., Rodríguez, A. M., Arana, J., Díaz, O. G., & Henríquez, J. G. (2010). Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological Engineering, 36, 891–899.

    Article  Google Scholar 

  • Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresource Technology, 157, 316–326.

    Article  CAS  Google Scholar 

  • Mexicano, L., Glenn, E. P., Hinojosa-Huerta, O., Garcia-Hernandez, J., Flessa, K., & Hinojosa-Corona, A. (2013). Long-term sustainability of the hydrology and vegetation of Cienega de Santa Clara, an anthropogenic wetland created by disposal of agricultural drain water in the delta of the Colorado River, Mexico. Ecological Engineering, 59, 111–120.

    Article  Google Scholar 

  • Mthembu, M. S., Odinga, C. A., Swalaha, F. M., & Bux, F. (2013). Constructed wetlands: A future alternative wastewater treatment technology. African Journal of Biotechnology, 12(29), 4542–4553.

    Article  Google Scholar 

  • Mulling, B. T., van den Boomen, R. M., van der Geest, H. G., Kappelhof, J. W., & Admiraal, W. (2013). Suspended particle and pathogen peak discharge buffering by a surface-flow constructed wetland. Water Research, 47, 1091–1100.

    Article  CAS  Google Scholar 

  • Naylor, S., Brisson, J., Labelle, M. A., Drizo, A., & Comeau, Y. (2003). Treatment of freshwater fish farm effluent using constructed wetlands: The role of plants and substrate. Water Science and Technology, 48, 215–222.

    Article  CAS  Google Scholar 

  • Okochi, N. C., & McMartin, D. W. (2011). Laboratory investigations of storm water remediation via slag: Effects of metals on phosphorus removal. Journal of Hazardous Materials, 187, 250–257.

    Article  CAS  Google Scholar 

  • Ong, S. A., Uchiyama, K., Inadama, D., Ishida, Y., & Yamagiwa, K. (2010). Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresource Technology, 101, 7239–7244.

    Article  CAS  Google Scholar 

  • Park, J. H., Wang, J. J., Kim, S. H., Cho, J. S., Kang, S. W., Delaune, R. D., & Seo, D. C. (2017). Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag. Chemical Engineering Journal, 327, 713–724.

    Article  CAS  Google Scholar 

  • Penuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., & Nardin, E. (2013). Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934.

    Article  CAS  Google Scholar 

  • Rai, U. N., Tripathi, R. D., Singh, N. K., Upadhyay, A. K., Dwivedi, S., Shukla, M. K., Mallick, S., Singh, S. N., & Nautiyal, C. S. (2013). Constructed wetland as an eco-technological tool for pollution treatment for conservation of Ganga River. Bioresource Technology, 148, 535–541.

    Article  CAS  Google Scholar 

  • Ren, Y., Zhang, B., Liu, Z., & Wang, J. (2007). Optimization of four kinds of constructed wetlands substrate combination treating domestic sewage. Wuhan University Journal of Natural Science, 12, 1136–1142.

    Article  CAS  Google Scholar 

  • Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448.

    Article  CAS  Google Scholar 

  • Saeed, T., & Sun, G. (2013). A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresource Technology, 128, 438–447.

    Article  CAS  Google Scholar 

  • Seo, D. C., Cho, J. S., Lee, H. J., & Heo, J. S. (2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research, 39, 2445–2457.

    Article  CAS  Google Scholar 

  • Shao, Y., Pei, H., Hu, W., Chanway, C. P., Meng, P., Ji, Y., & Li, Z. (2014). Bioaugmentation in lab scale constructed wetland microcosms for treating polluted river water and domestic wastewater in northern China. International Biodeterioration and Biodegradation, 95, 151–159.

    Article  CAS  Google Scholar 

  • Sim, C. H., Eikaas, H. S., Chan, S. H., & Gan, J. (2011). Nutrient removal and plant biomass of 5 wetland plant species in Singapore. Water Practice Technology, 6, 2011053.

    Article  Google Scholar 

  • Singh, S., Haberl, R., Moog, O., Shrestha, R. R., Shrestha, P., & Shrestha, R. (2009). Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal—A model for DEWATS. Ecological Engineering, 35, 654–660.

    Article  Google Scholar 

  • Stefanakis, A. I., & Tsihrintzis, V. A. (2012). Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chemical Engineering Journal, 181, 416–430.

    Article  CAS  Google Scholar 

  • Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2014). Vertical flow constructed wetlands: Eco-engineering systems for wastewater and sludge treatment. Newnes

    Google Scholar 

  • Sudarsan, J. S., Roy, R. L., Baskar, G., Deeptha, V. T., & Nithiyanantham, S. (2015). Domestic wastewater treatment performance using constructed wetland. Sustainable Water Resources Management, 1, 89–96.

    Article  Google Scholar 

  • Tao, W., & Wang, J. (2009). Effect of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems. Ecological Engineering, 35, 836–842.

    Article  Google Scholar 

  • Truu, J., Nurk, K., Juhanson, J., & Mander, Ü. (2005). Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. Journal of Environmental Science and Health, 40, 1191–1200.

    Article  CAS  Google Scholar 

  • Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. The Science of the Total Environment, 407, 3958–3971.

    Article  CAS  Google Scholar 

  • Tsihrintzis, V. A. (2017). The use of vertical flow constructed wetlands in wastewater treatment. Water Resources Management, 1–26.

    Google Scholar 

  • Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25, 478–490.

    Article  Google Scholar 

  • Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow. Hydrobiologia, 10, 738–749.

    Google Scholar 

  • Vymazal, J. (2013a). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61, 582–592.

    Article  Google Scholar 

  • Vymazal, J. (2013b). The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Research, 47, 4795–4811.

    Article  CAS  Google Scholar 

  • Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ Int, 75, 11–20.

    Article  CAS  Google Scholar 

  • Vymazal, J., & Kröpfelová, L. (2009). Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. The Science of the Total Environment, 407, 3911–3922.

    Article  CAS  Google Scholar 

  • Wallace, S., & Kadlec, R. (2005). BTEX degradation in a cold-climate wetland system. Water Science Technology, 51, 165–171.

    Article  CAS  Google Scholar 

  • Wang, C. Y., & Sample, D. J. (2013). Assessing floating treatment wetlands nutrient removal performance through a first order kinetics model and statistical inference. Ecological Engineering, 61, 292–302.

    Article  Google Scholar 

  • Wang, G., Wang, Y., & Gao, Z. (2010). Use of steel slag as a granular material: Volume expansion prediction and usability criteria. Journal of Hazardous Materials, 184, 555–560.

    Article  CAS  Google Scholar 

  • Wang, Y. C., Ko, C. H., Chang, F. C., Chen, P. Y., Liu, T. F., Sheu, Y. S., Shih, T. L., & Teng, C. J. (2011). Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass and Bioenergy, 35, 50–58.

    Article  CAS  Google Scholar 

  • Wang, H., Chen, Z. X., Zhang, X. Y., Zhu, S. X., Ge, Y., Chang, S. X., Zhang, C. B., Huang, C. C., & Chang, J. (2013). Plant species richness increased belowground plant biomass and substrate nitrogen removal in a constructed wetland. Clean Soil Air Water, 41, 657–664.

    Article  CAS  Google Scholar 

  • Wang, W., Ding, Y., Wang, Y., Song, X., Ambrose, R. F., Ullman, J. L., Winfrey, B. K., Wang, J., & Gong, J. (2016). Treatment of rich ammonia nitrogen wastewater with polyvinyl alcohol immobilized nitrifier biofortified constructed wetlands. Ecological Engineering, 94, 7–11.

    Article  Google Scholar 

  • Wang, X. J., Zhang, J. Y., Gao, J., Shahid, S., Xia, X. H., Geng, Z., & Tang, L. (2017). The new concept of water resources management in China: ensuring water security in changing environment. Environment Development Sustainability, 1–13.

    Google Scholar 

  • Wojciechowska, E., Gajewska, M., & Ostojski, A. (2017). Reliability of nitrogen removal processes in multi-stage treatment wetlands receiving high-strength wastewater. Ecological Engineering, 98, 365–371.

    Article  Google Scholar 

  • Wu, S., Kuschk, P., Brix, H., Vymazal, J., & Dong, R. (2014). Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research, 57, 40–55.

    Article  CAS  Google Scholar 

  • Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015a). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594–601.

    Article  CAS  Google Scholar 

  • Wu, H., Fan, J., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., & Liang, S. (2015b). Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths. Bioresource Technology, 176, 163–168.

    Article  CAS  Google Scholar 

  • Wu, H., Fan, J., Zhang, J., Ngo, H. H., GuoW, L. S., Hu, Z., & Liu, H. (2015c). Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment. Environmental Science and Pollution Research, 22, 14637–14650.

    Article  Google Scholar 

  • Wu, H., Lin, L., Zhang, J., Guo, W., Liang, S., & Liu, H. (2016). Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent. Bioresource Technology, 219, 768–772.

    Article  CAS  Google Scholar 

  • Xu, D., Xu, J., Wu, J., & Muhammad, A. (2006). Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 63, 344–352.

    Article  CAS  Google Scholar 

  • Yamochi, S., Tanaka, T., Otani, Y., & Endo, T. (2017). Effects of light, temperature and ground water level on the CO2 flux of the sediment in the high water temperature seasons at the artificial north salt marsh of Osaka Nanko bird sanctuary, Japan. Ecological Engineering, 98, 330–338.

    Article  Google Scholar 

  • Yan, Y., & Xu, J. (2014). Improving winter performance of constructed wetlands for wastewater treatment in northern China: A review. Wetlands, 34, 243–253.

    Article  Google Scholar 

  • Zhang, Z., Rengel, Z., & Meney, K. (2007). Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono-and mixed-culture in wetland microcosms. Water Air Soil Pollution, 183, 95–105.

    Article  CAS  Google Scholar 

  • Zhang, C. B., Wang, J., Liu, W. L., Zhu, S. X., Ge, H. L., Chang, S. X., Chang, J., & Ge, Y. (2010). Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering, 36, 62–68.

    Article  Google Scholar 

  • Zhang, T., Xu, D., He, F., Zhang, Y., & Wu, Z. (2012). Application of constructed wetland for water pollution control in China during 1990-2010. Ecological Engineering, 47, 189–197.

    Article  Google Scholar 

  • Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Ng, W. J., & Tan, S. K. (2014). Application of constructed wetlands for wastewater treatment in developing countries–a review of recent developments (2000–2013). Journal of Environmental Management, 141, 116–131.

    Article  CAS  Google Scholar 

  • Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Tan, S. K., & Ng, W. J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). Journal of Environmental Sciences, 30, 30–46.

    Article  Google Scholar 

  • Zhang, Y., Carvalho, P. N., Lv, T., Arias, C., Brix, H., & Chen, Z. (2016). Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. Water Science & Technology, 73, 679–686.

    Article  Google Scholar 

  • Zhao, Y. J., Liu, B., Zhang, W. G., Ouyang, Y., & An, S. Q. (2010). Performance of pilot-scale vertical-flow constructed wetlands in responding to variation in influent C/N ratios of simulated urban sewage. Bioresource Technology, 101, 1693–1700.

    Article  CAS  Google Scholar 

  • Zhao, Y. J., Hui, Z., Chao, X., Nie, E., Li, H. J., He, J., & Zheng, Z. (2011). Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecological Engineering, 37, 1546–1554.

    Article  Google Scholar 

  • Zhao, Y., Zhang, Y., Ge, Z., Hu, C., & Zhang, H. (2014). Effects of influent C/N ratios on wastewater nutrient removal and simultaneous greenhouse gas emission from the combinations of vertical subsurface flow constructed wetlands and earthworm eco-filters for treating synthetic wastewater. Environmental Science: Processes & Impacts, 16, 567–575.

    CAS  Google Scholar 

  • Zhao, Z., Chang, J., Han, W., Wang, M., Ma, D., Du, Y., Qu, Z., Chang, S. X., & Ge, Y. (2016a). Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands. Ecological Engineering, 95, 390–398.

    Article  Google Scholar 

  • Zhao, X., Yang, J., Bai, S., Ma, F., & Wang, L. (2016b). Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10.C. Bioresource Technology, 205, 166–173.

    Article  CAS  Google Scholar 

  • Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface flow constructed wetlands in north-western China. Ecological Engineering, 83, 268–275.

    Article  Google Scholar 

  • Zheng, Y., Wang, X., Dzakpasu, M., Zhao, Y., Ngo, H. H., Guo, W., Ge, Y., & Xiong, J. (2016). Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresource Technology, 207, 134–141.

    Article  CAS  Google Scholar 

  • Zhu, H., Yan, B., Xu, Y., Guan, J., & Liu, S. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 63, 58–63.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Environmental Science, Babasaheb Bhimrao Ambedkar University (a Central University), Lucknow, India, for their continuous support throughout this study. Junior Research Fellowship (JRF) from University Grants Commission, New Delhi to the first author is greatly acknowledged.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Dutta, V. (2019). Efficiency of Constructed Wetland Microcosms (CWMs) for the Treatment of Domestic Wastewater Using Aquatic Macrophytes. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_11

Download citation

Publish with us

Policies and ethics