Skip to main content

Biochar for Effective Cleaning of Contaminated Dumpsite Soil: A Sustainable and Cost-Effective Remediation Technique for Developing Nations

  • Chapter
  • First Online:
Environmental Biotechnology: For Sustainable Future

Abstract

Several studies have reported that open municipal dumpsites in developing countries are acting as a major source for a wide variety of pollutants. In developing nations, many dumpsites are located in the urban centers or even within the residential boundaries. Contaminants released during incomplete combustion of municipal solid waste have profound adverse impact on human health and the environment. Hence there is an urgent need to identify a low-cost technique to decontaminate such heavily polluted sites. In this chapter, we have reviewed several papers and discussed how different types of engineered biochars can be effectively used to adsorb contaminants from dumpsite soil. Biochars are basically carbon-rich solids treated by high-temperature pyrolysis. Biochars are obtained by heating biomass in presence of less oxygen or in anaerobic conditon. Properly pyrolysed mixtures of organic and cellulosic wastes are capable of adsorbing a wide variety of organic contaminants from wastewater, sludge and soil prior to the release or disposal in engineered landfills. Biochar produced from waste organic material such as coconut shells, sugarcane bagasse and straw has been reported with high adsorption capacity. Because locally produced waste organic material can be utilized for production of these low-cost adsorbents, they are especially attractive for remediation and treatment systems in developing countries. Pyrolytic temperature is believed to be the most important factor affecting the sorption capacity of biochar, followed by grinding to increase the surface area. Holding and adsorption capacity of the biochar for treating contaminants in soil could be a limiting factor of these materials. Some studies have shown that less than 5–7% (m/m) mixing of biochar and soil resulted in higher water retention capacity leading to increased potential for biodegradation. We therefore suggest that improved low-cost processing methods should be investigated so that biochar can be exploited as an adsorptive medium for remediating and treating contaminated soils in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 146, 444–450.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J.-K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Alexis, M., Rasse, D. P., Rumpel, C., Bardoux, G., Péchot, N., Schmalzer, P., Drake, B., & Mariotti, A. (2007). Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry, 82, 201–216.

    Article  Google Scholar 

  • Amonette, J. E., & Joseph, S. (2009). Characteristics of biochar: Microchemical properties. In Biochar for environmental management. Science and Technology (p. 33). London: Earthscan.

    Google Scholar 

  • Arun, S., Kothari, K., Mazumdar, D., Mukhopadhyay, M., & Chakraborty, P. (2017). Biochar production from domestic sludge: A cost-effective, recycled product for removal of amoxicillin in wastewater. IOP Conference Series: Materials Science and Engineering, 225, 012164.

    Article  Google Scholar 

  • Barrow, C. (2012). Biochar: Potential for countering land degradation and for improving agriculture. Applied Geography, 34, 21–28.

    Article  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158, 2282–2287.

    Article  CAS  Google Scholar 

  • Beesley, L., & Dickinson, N. (2011). Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biology & Biochemistry, 43, 188–196.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159, 474–480.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.

    Article  CAS  Google Scholar 

  • Boehm, H. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32, 759–769.

    Article  CAS  Google Scholar 

  • Buzier, R., Tusseau-Vuillemin, M.-H., dit Meriadec, C. M., Rousselot, O., & Mouchel, J.-M. (2006). Trace metal speciation and fluxes within a major French wastewater treatment plant: Impact of the successive treatments stages. Chemosphere, 65, 2419–2426.

    Article  CAS  Google Scholar 

  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43, 3285–3291.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Zhang, G., Eckhardt, S., Li, J., Breivik, K., Lam, P. K., Tanabe, S., & Jones, K. C. (2013). Atmospheric polychlorinated biphenyls in Indian cities: Levels, emission sources and toxicity equivalents. Environmental Pollution, 182, 283–290.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Zhang, G., Li, J., Sivakumar, A., & Jones, K. C. (2015). Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: Assessment of air–soil exchange. Environmental Pollution, 204, 74–80.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Khuman, S. N., Selvaraj, S., Sampath, S., Devi, N. L., Bang, J. J., & Katsoyiannis, A. (2016). Polychlorinated biphenyls and organochlorine pesticides in River Brahmaputra from the outer Himalayan Range and River Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment. Environmental Pollution, 219, 998–1006.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Selvaraj, S., Nakamura, M., Prithiviraj, B., Cincinelli, A., & Bang, J. J. (2018). PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: Levels, congener profiles and health risk assessment. Science of the Total Environment 621, 930–938.

    Article  CAS  Google Scholar 

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42, 5137–5143.

    Article  CAS  Google Scholar 

  • Chen, B., & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76, 127–133.

    Article  CAS  Google Scholar 

  • Chen, B., & Yuan, M. (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments, 11, 62–71.

    Article  CAS  Google Scholar 

  • Chen, X.-W., Wong, J. T.-F., Ng, C. W.-W., & Wong, M.-H. (2016). Feasibility of biochar application on a landfill final cover—A review on balancing ecology and shallow slope stability. Environmental Science and Pollution Research, 23, 7111–7125.

    Article  CAS  Google Scholar 

  • Choppala, G. K., Bolan, N., Megharaj, M., Chen, Z., & Naidu, R. (2012). The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Journal of Environmental Quality, 41, 1175–1184.

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38, 4649–4655.

    Article  CAS  Google Scholar 

  • Debela, F., Thring, R., & Arocena, J. (2012). Immobilization of heavy metals by co-pyrolysis of contaminated soil with woody biomass. Water, Air, and Soil Pollution, 223, 1161–1170.

    Article  CAS  Google Scholar 

  • Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In Biochar for environmental management: Science and technology (pp. 13–32). London: Earthscan.

    Google Scholar 

  • Duku, M. H., Gu, S., & Hagan, E. B. (2011). Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews, 15, 3539–3551.

    Article  Google Scholar 

  • Eckel, H., Roth, U., Döhler, H., & Schultheis, U. (2008). Assessment and reduction of heavy metal input into agro-ecosystems. In P. Schlegel & A. W. Durosoy S Jongbloed (Eds.), Trace elements in animal production systems (pp. 33–43). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Fellet, G., Marchiol, L., Delle Vedove, G., & Peressotti, A. (2011). Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 83, 1262–1267.

    Article  CAS  Google Scholar 

  • Feng, Y., Dionysiou, D. D., Wu, Y., Zhou, H., Xue, L., He, S., & Yang, L. (2013). Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: Adsorption process and disposal methodology of depleted bioadsorbents. Bioresource Technology, 138, 191–197.

    Article  CAS  Google Scholar 

  • Frazzoli, C., Orisakwe, O. E., Dragone, R., & Mantovani, A. (2010). Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios. Environmental Impact Assessment Review, 30, 388–399.

    Article  Google Scholar 

  • Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157, 1554–1558.

    Article  CAS  Google Scholar 

  • Glaser, B., Lehmann, J., Steiner, C., Nehls, T., Yousaf, M., & Zech, W. (2002). Potential of pyrolyzed organic matter in soil amelioration, 12th ISCO conference (pp. 421–427). Beijing.

    Google Scholar 

  • Gomez-Eyles, J. L., Sizmur, T., Collins, C. D., & Hodson, M. E. (2011). Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution, 159, 616–622.

    Article  CAS  Google Scholar 

  • Hameed, B., & El-Khaiary, M. (2008). Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 159, 574–579.

    Article  CAS  Google Scholar 

  • Hartley, W., Dickinson, N. M., Riby, P., & Lepp, N. W. (2009). Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environmental Pollution, 157, 2654–2662.

    Article  CAS  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140.

    Article  CAS  Google Scholar 

  • Inanc, B., Idris, A., Terazono, A., & Sakai, S.-i. (2004). Development of a database of landfills and dump sites in Asian countries. Journal of Material Cycles and Waste Management, 6, 97–103.

    Article  Google Scholar 

  • Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232–240.

    Article  CAS  Google Scholar 

  • Islam, M. T., Abdullah, A., Shahir, S., Kalam, M., Masjuki, H., Shumon, R., & Rashid, M. H. (2016). A public survey on knowledge, awareness, attitude and willingness to pay for WEEE management: Case study in Bangladesh. Journal of Cleaner Production, 137, 728–740.

    Article  Google Scholar 

  • Jeong, C. Y., Wang, J. J., Dodla, S. K., Eberhardt, T. L., & Groom, L. (2012). Effect of biochar amendment on tylosin adsorption–desorption and transport in two different soils. Journal of Environmental Quality, 41, 1185–1192.

    Article  CAS  Google Scholar 

  • Jiang, J., Xu, R.-k., T-y, J., & Li, Z. (2012a). Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229, 145–150.

    Article  CAS  Google Scholar 

  • Jiang, T.-Y., Jiang, J., Xu, R.-K., & Li, Z. (2012b). Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89, 249–256.

    Article  CAS  Google Scholar 

  • Jung, K.-W., Kim, K., Jeong, T.-U., & Ahn, K.-H. (2016). Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresource Technology, 200, 1024–1028.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191, 41–48.

    Article  CAS  Google Scholar 

  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, 990–1000.

    Article  CAS  Google Scholar 

  • Korthals, G. W., van de Ende, A., van Megen, H., Lexmond, T. M., Kammenga, J. E., & Bongers, T. (1996). Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life-history strategy groups. Applied Soil Ecology, 4, 107–117.

    Article  Google Scholar 

  • Lehmann, J., da Silva, J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343–357.

    Article  CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43, 1812–1836.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Abingdon/New York: Routledge.

    Book  Google Scholar 

  • Li, R., Wang, J. J., Zhou, B., Awasthi, M. K., Ali, A., Zhang, Z., Lahori, A. H., & Mahar, A. (2016). Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresource Technology, 215, 209–214.

    Article  CAS  Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb 2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.

    Article  CAS  Google Scholar 

  • Luo, L., Ma, Y., Zhang, S., Wei, D., & Zhu, Y.-G. (2009). An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90, 2524–2530.

    Article  CAS  Google Scholar 

  • Ma, J., Wang, H., & Luo, Q. (2007). Movement-adsorption and its mechanism of Cd in soil under combining effects of electrokinetics and a new type of bamboo charcoal. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui “Huan jing ke xue” bian ji wei yuan hui], 28, 1829–1834.

    CAS  Google Scholar 

  • McCarl, B. A., Peacocke, C., Chrisman, R., Kung, C.-C., & Sands, R. D. (2009). Economics of biochar production, utilization and greenhouse gas offsets. In Biochar for environmental management Science and Technology (pp. 341–358). London: Earthscan.

    Google Scholar 

  • Méndez, A., Gómez, A., Paz-Ferreiro, J., & Gascó, G. (2012). Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89, 1354–1359.

    Article  CAS  Google Scholar 

  • Minh, N. H., Minh, T. B., Watanabe, M., Kunisue, T., Monirith, I., Tanabe, S., Sakai, S., Subramanian, A., Sasikumar, K., Viet, P. H., Tuyen, B. C., Tana, T. S., & Prudente, M. S. (2003). Open dumping site in Asian developing countries: A potential source of polychlorinated dibenzo-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology 37 (8):1493–1502.

    Article  CAS  Google Scholar 

  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U., Jr. (2011). Modeling and evaluation of chromium remediation from water using low-cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188, 319–333.

    Article  CAS  Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low-cost and sustainable adsorbent–a critical review. Bioresource Technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Mulligan, C., Yong, R., & Gibbs, B. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Namgay, T., Singh, B., & Singh, B. (2010). Plant availability of arsenic and cadmium as influenced by biochar application to soil, 19th world congress of soil science.

    Google Scholar 

  • Nigam, P., Armour, G., Banat, I., Singh, D., & Marchant, R. (2000). Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72, 219–226.

    Article  CAS  Google Scholar 

  • Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K., Ahmedna, M., Rehrah, D., Watts, D. W., & Busscher, W. J. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3, 195–206.

    CAS  Google Scholar 

  • Olafisoye, O. B., Adefioye, T., & Osibote, O. A. (2013). Heavy metals contamination of water, soil, and plants around an electronic waste dumpsite. Polish Journal of Environmental Studies, 22, 1431–1439.

    CAS  Google Scholar 

  • Oleszczuk, P., Hale, S. E., Lehmann, J., & Cornelissen, G. (2012). Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresource Technology, 111, 84–91.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Kwon, S., & Lu, Y. (2006). Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Attenuation of surface activity by humic and fulvic acids. Environmental Science & Technology, 40, 7757–7763.

    Article  CAS  Google Scholar 

  • Pratt, K., & Moran, D. (2010). Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass and Bioenergy, 34, 1149–1158.

    Article  CAS  Google Scholar 

  • Qiu, Y., Zheng, Z., Zhou, Z., & Sheng, G. D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 100, 5348–5351.

    Article  CAS  Google Scholar 

  • Reddy, K. R., Yargicoglu, E. N., Yue, D., & Yaghoubi, P. (2014). Enhanced microbial methane oxidation in landfill cover soil amended with biochar. Journal of Geotechnical and Geoenviromental Engineering, 140, 04014047.

    Article  CAS  Google Scholar 

  • Robinson, B. H. (2009). E-waste: An assessment of global production and environmental impacts. Science of the Total Environment, 408, 183–191.

    Article  CAS  Google Scholar 

  • Schnoor, J. L., Light, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreia, L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environmental Science & Technology, 29, 318A–323A.

    Article  CAS  Google Scholar 

  • Serio, M. A., Chen, Y., Wójtowicz, M., & Suuberg, E. (2000). Pyrolysis processing of mixed solid waste streams. ACS Division of Fuel Chemistry Preprints, 45, 466–474.

    CAS  Google Scholar 

  • Shehzad, A., Bashir, M. J., Sethupathi, S., & Lim, J. W. (2016). An insight into the remediation of highly contaminated landfill leachate using sea mango based activated bio-char: Optimization, isothermal and kinetic studies. Desalination of Water Treatment, 57, 22244–22257.

    Article  CAS  Google Scholar 

  • Shih, Y.-H., SJe, K., Tseng, C.-H., Wang, H.-C., Chen, L.-L., & Chang, Y.-M. (2016). Health risks and economic costs of exposure to PCDD/Fs from open burning: A case study in Nairobi, Kenya. Air Quality, Atmosphere and Health, 9, 201–211.

    Article  CAS  Google Scholar 

  • Someya, M., Ohtake, M., Kunisue, T., Subramanian, A., Takahashi, S., Chakraborty, P., Ramachandran, R., & Tanabe, S. (2010). Persistent organic pollutants in breast milk of mothers residing around an open dumping site in Kolkata, India: Specific dioxin-like PCB levels and fish as a potential source. Environment International, 36, 27–35.

    Article  CAS  Google Scholar 

  • Song, Y., Wang, F., Bian, Y., Kengara, F. O., Jia, M., Xie, Z., & Jiang, X. (2012a). Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. Journal of Hazardous Materials, 217, 391–397.

    Article  CAS  Google Scholar 

  • Song, Y., Wang, F., Yang, X., Bian, Y., Gu, C., Xie, Z., & Jiang, X. (2012b). Influence and assessment of biochar on the bioavailability of chlorobenzenes in soil. Huan Jing Ke Xue, 33, 169–174.

    CAS  Google Scholar 

  • Spokas, K. A., & Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science, 3, 179–193.

    CAS  Google Scholar 

  • Sun, K., Gao, B., Ro, K. S., Novak, J. M., Wang, Z., Herbert, S., & Xing, B. (2012). Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. Environmental Pollution, 163, 167–173.

    Article  CAS  Google Scholar 

  • Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578.

    Article  CAS  Google Scholar 

  • Suppadit, T., Phumkokrak, N., & Poungsuk, P. (2012). The effect of using quail litter biochar on soybean (Glycine max [L.] Merr.) production. Chilean Journal of Agricultural Research, 72, 244.

    Article  Google Scholar 

  • Tan, B. H., Teng, T. T., & Omar, A. M. (2000). Removal of dyes and industrial dye wastes by magnesium chloride. Water Research, 34, 597–601.

    Article  CAS  Google Scholar 

  • Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116, 653–659.

    Article  CAS  Google Scholar 

  • Tao, S., Xu, F., Wang, X., Liu, W., Gong, Z., Fang, J., Zhu, L., & Luo, Y. (2005). Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China. Environmental Science & Technology, 39, 2494–2499.

    Article  CAS  Google Scholar 

  • Thanh, N. P., & Matsui, Y. (2011). Municipal solid waste management in Vietnam: Status and the strategic actions. International Journal of Environmental Research, 5, 285–296.

    CAS  Google Scholar 

  • Thies, J. E., & Rillig, M. C. (2009). Characteristics of biochar: Biological properties. In Biochar for environmental management: Science and Technology (pp. 85–105). London: Earthscan.

    Google Scholar 

  • Thitame, S. N., Pondhe, G., & Meshram, D. (2010). Characterisation and composition of municipal solid waste (MSW) generated in Sangamner city, district Ahmednagar, Maharashtra, India. Environmental Monitoring and Assessment, 170, 1–5.

    Article  CAS  Google Scholar 

  • Tong, X.-j., Li, J.-y., Yuan, J.-h., & R-k, X. (2011). Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 172, 828–834.

    Article  CAS  Google Scholar 

  • Ubbelohde, A. R., & Lewis, F. A. (1960). Graphite and its crystal compounds. Oxford: Clarendon Press.

    Google Scholar 

  • Uchimiya, M., Lima, I. M., Thomas Klasson, K., Chang, S., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58, 5538–5544.

    Article  CAS  Google Scholar 

  • Wang, H., Lin, K., Hou, Z., Richardson, B., & Gan, J. (2010). Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. Journal of Soils and Sediments, 10, 283–289.

    Article  CAS  Google Scholar 

  • Wang, S., Gao, B., & Li, Y. (2016). Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides. Journal of Industrial and Engineering Chemistry, 37, 361–365.

    Article  CAS  Google Scholar 

  • Willmott, N., Guthrie, J., & Nelson, G. (1998). The biotechnology approach to colour removal from textile effluent. Coloration Technology, 114, 38–41.

    CAS  Google Scholar 

  • World Bank. (2012). https://siteresources.worldbank.org/INTURBANDEVELOPMENT/Resources/336387-1334852610766/What_a_Waste2012_Final.pdf

  • Xu, T., Lou, L., Luo, L., Cao, R., Duan, D., & Chen, Y. (2012). Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Science of the Total Environment, 414, 727–731.

    Article  CAS  Google Scholar 

  • Yang, R.-q., Jiang, G.-b., Zhou, Q.-f., Yuan, C.-g., & Shi, J.-b. (2005). Occurrence and distribution of organochlorine pesticides (HCH and DDT) in sediments collected from East China Sea. Environment International, 31, 799–804.

    Article  CAS  Google Scholar 

  • Yang, X.-B., Ying, G.-G., Peng, P.-A., Wang, L., Zhao, J.-L., Zhang, L.-J., Yuan, P., & He, H.-P. (2010). Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. Journal of Agricultural and Food Chemistry, 58, 7915–7921.

    Article  CAS  Google Scholar 

  • Yip, K., Wu, H., & D-k, Z. (2007). Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification. Energy & Fuels, 21, 2883–2891.

    Article  CAS  Google Scholar 

  • Yu, X.-Y., Ying, G.-G., & Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry, 54, 8545–8550.

    Article  CAS  Google Scholar 

  • Yu, X.-Y., Ying, G.-G., & Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 76, 665–671.

    Article  CAS  Google Scholar 

  • Yu, X., Wang, D., Mu, C., & Liu, X. (2011). Role of biochar in slow sorption and desorption of diuron in soil. Jiangsu Academy of Agricultural Sciences, 27, 1011–1015.

    Google Scholar 

  • Zhang, H., Lin, K., Wang, H., & Gan, J. (2010). Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environmental Pollution, 158, 2821–2825.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483.

    Article  CAS  Google Scholar 

  • Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256, 1–9.

    Google Scholar 

  • Zheng, W., Guo, M., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 181, 121–126.

    Article  CAS  Google Scholar 

  • Zhou, J., Deng, C., Chen, J., & Zhang, Q. (2008). Remediation effects of cotton stalk carbon on cadmium (Cd) contaminated soil. Ecology and Environment, 17, 1857–1860.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank MoEFCC (Ministry of Environment, Forest and Climate Change) for the project given to Dr. Paromita Chakraborty No. Q-14011/43/2013-CPW (EHC). PC would also like to acknowledge the Water Advanced Research and Innovation (WARI) Fellowship Program supported by the Department of Science and Technology, Govt. of India, the University of Nebraska-Lincoln (UNL), the Daugherty Water for Food Institute (DWFI) and the Indo-US Science and Technology Forum (IUSSTF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paromita Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, P., Mukhopadhyay, M., Shruthi, R., Mazumdar, D., Snow, D., Wang, J.J. (2019). Biochar for Effective Cleaning of Contaminated Dumpsite Soil: A Sustainable and Cost-Effective Remediation Technique for Developing Nations. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_1

Download citation

Publish with us

Policies and ethics