Skip to main content

Wavelets and Wavelet Transform

  • Chapter
  • First Online:
Multiscale Transforms with Application to Image Processing

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Wavelet transforms are the most powerful and the most widely used tool in the field of image processing. Wavelet transform has received considerable attention in the field of image processing due to its flexibility in representing non-stationary image signals and its ability in adapting to human visual characteristics. Wavelet transform is an efficient tool to represent an image. The wavelet transform allows multiresolution analysis of an image. The aim of the transform is to extract relevant information from an image. A wavelet transform divides a signal into a number of segments, each corresponding to a different frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ates, H.F., Orchard, M.T.: A nonlinear image representation in wavelet domain using complex signals with single quadrant spectrum. Proc. Asilomar Conf. Signals Syst. Comput. 2, 1966–1970 (2003)

    Google Scholar 

  2. Antoine, J.P., Carrette, P., Murenzi, R., Piette, B.: Image analysis with two-dimensional continuous wavelet transform. Signal Process. 31, 241–272 (1993)

    Article  MATH  Google Scholar 

  3. Bachmann, G., Narici, L., Beckenstein, E.: Fourier and Wavelet Analysis. Springer, New York (1999)

    Google Scholar 

  4. Belzer, B., Lina, J.M., Villasenor, J.: Complex, linear-phase filters for efficient image coding. IEEE Trans. Signal Process. 43(10), 2425–2427 (1995)

    Article  Google Scholar 

  5. Corrochano, E.B.: Multiresolution image analysis using the quaternion wavelet transform. Numer. Algorithms 39, 35–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corrochano, E.B.: The theory and the use of the quaternion wavelet transform. J. Math. Imaging Vis. 24(1), 19–35 (2006)

    Article  MathSciNet  Google Scholar 

  7. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets. Capital City Press (1992)

    Google Scholar 

  9. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Google Scholar 

  10. Fernandes, F., Wakin, M., Baraniuk, R. G.: Non-redundant, linear-phase, semi-orthogonal, directional complex wavelets. In: Proceedings of the IEEE International Conference on Acoustics Speech Signal Processing (ICASSP), Montreal, vol. 2, pp. 953–956 (2004)

    Google Scholar 

  11. Frazier, M.W.: An Introduction to Wavelets through Linear Algebra. Springer, New York (1999)

    MATH  Google Scholar 

  12. Gripenberg, G.: A necessary and sufficient condition for the existence of a father wavelet. Studia Math. 114(3), 207–226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hernández, E., Weiss G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Google Scholar 

  14. Kingsbury, N.G., Magarey, J.F.A.: Wavelet transforms in image processing. In: Proceedings 1st European Conference Signal Analysis Prediction, pp. 23–34 (1997)

    Google Scholar 

  15. Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10(3), 234–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kingsbury, N.G.: Image processing with complex wavelets. Philos. Trans. R. Soc. Lond. A. Math. Phys. Sci. 357(1760), 2543–2560 (1999)

    Google Scholar 

  17. Kingsbury, N.G.: The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. In: Proceedings of the 8th IEEE DSP Workshop, Utah (1998)

    Google Scholar 

  18. Kingsbury, N.G., Magarey, J.F.A.: Wavelet transforms in image processing. In: Proceedings of the First European Conference Signal Analysis Prediction, pp. 23–34 (1997)

    Google Scholar 

  19. Lang, M., Guo, H., Odegard, J.E., Burrus, C.S., Wells Jr., R.O.: Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Process. Lett. 3(1), 10–12 (1996)

    Article  Google Scholar 

  20. Lina, J.M., Mayrand, M.: Complex daubechies wavelets. Appl. Comput. Harmon. Anal. 2(3), 219–229 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mallat, S.G.: Multiresolution approximation and wavelet orthonormal bases of \(L^2(\mathbb{R})\). Trans. Am. Math. Sot. 315(1), 69–87 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, vol. 11, pp. 674–693 (1989)

    Google Scholar 

  23. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA (1998)

    MATH  Google Scholar 

  24. Meyer, Y.: Wavelets and Operators, vol. 37. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  25. Meyer, Y.: Wavelets Algorithms and Applications. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  26. Papadakis, M.: On the dimension function of orthonormal wavelets. Proc. Am. Math. Soc. 128(7), 2043–2049 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Romber, G.J., Wakin, M., Choi, H., Baraniuk, R.G.: A geometric hidden markov tree wavelet model. In: Proceedings of the Wavelet Applications Signal Image Processing X (SPIE 5207), San Diego, pp. 80–86 (2003)

    Google Scholar 

  28. Romberg, J.K., Wakin, M., Choi, H., Kingsbury, N.G., Baraniuk, R.G.: A Hidden Markov Tree Model for the Complex Wavelet Transform. Technical Report, Rice ECE (2002)

    Google Scholar 

  29. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    Google Scholar 

  30. Rudin, W.: Real and Complex Analysis, 2nd edn. McGraw-Hill, New York (1974)

    Google Scholar 

  31. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  32. Spaendonck, R., Van, B.T., Baraniuk, R., Vetterli M.: Orthogonal Hilbert transform filter banks and wavelets. In: Proceedings of the IEEE International Conference Acoustic, Speech, Signal Processing (ICASSP), vol. 6, pp. 505–508 (2003)

    Google Scholar 

  33. The Wutam Consortium: Basic Properties of Wavelets. J. Fourier Anal. Appl. 4, 575–594 (1998)

    Article  MathSciNet  Google Scholar 

  34. Tian, L.S., Zhang, X.P., Peng, Y.N.: From the wavelet series to the discrete wavelet transform. IEEE Trans. Signal Process. 44(1), 129–133 (1996)

    Article  Google Scholar 

  35. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs, NJ (1995)

    MATH  Google Scholar 

  36. Wakin, M.: Image Compression using Multiscale Geometric Edge Models. Master thesis, Rice University, Houston, TX (2002)

    Google Scholar 

  37. Wakin, M., Orchard, M., Baraniuk, R.G., Chandrasekaran, V.: Phase and magnitude perceptual sensitivities in nonredundant complex wavelet representations. In: Proceedings of the Asilomar Conference on Signals, Systems, Computers, vol. 2, pp. 1413–1417 (2003)

    Google Scholar 

  38. Walnut, D.F.: An Introduction to Wavelet Analysis. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  39. Wang, Z., Simoncelli, E.P.: Local Phase Coherence and the Perception of Blur. In: Thrun, S., Saul, L., Schlkopf, B. (eds.) Adv. Neural Information Processing Systems, vol. 16. MIT Press, Cambridge, MA (2004)

    Google Scholar 

  40. Wang, X.: The Study of Wavelets from the Properties of their Fourier Transforms, Ph.D. Thesis, Washington University, (1995)

    Google Scholar 

  41. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  42. Yin, M., Liu, W., Shui, J., Wu, J.: Quaternion Wavelet Analysis and Application in Image Denoising. Mathematical problems in Engineering, vol. 2012. Hindwai publishing Corporation, Cairo (2012)

    Google Scholar 

  43. Young, R.K.: Wavelet Theory and Its Applications. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Vyas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vyas, A., Yu, S., Paik, J. (2018). Wavelets and Wavelet Transform. In: Multiscale Transforms with Application to Image Processing. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7272-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7272-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7271-0

  • Online ISBN: 978-981-10-7272-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics