Skip to main content

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Higher energy/power of a supercapacitor device relay on different fundamental principles like ion diffusion and electron conduction within the electrode materials. To achieve both the characteristics in a single/pair of materials is a challenging task and probably can be achieved by integrating the pseudocapacitive and EDLCs in a single supercapacitor device. In this chapter, a detailed discussion on the selection of electrode materials and their integration in asymmetric as well as hybrid supercapacitor has been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aravindan V, Gnanaraj J, Lee Y-S, Madhavi S (2014) Insertion-type electrodes for nonaqueous li-ion capacitors. Chem Rev 114:11619–11635. doi:10.1021/cr5000915

    Article  Google Scholar 

  • Grote F, Lei Y (2014) A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 10:63–70. doi:10.1016/j.nanoen.2014.08.019

    Article  Google Scholar 

  • Guan B, Li Y, Yin B et al (2017) Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J 308:1165–1173. doi:10.1016/j.cej.2016.10.016

    Article  Google Scholar 

  • Li Q, Chen W, Liu Z et al (2015a) Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway. J Power Sour 279:267–280. doi:10.1016/j.jpowsour.2014.12.042

    Article  Google Scholar 

  • Li R, Wang Y, Zhou C et al (2015b) Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery–supercapacitor hybrid device with high environmental suitability. Adv Funct Mater 25:5384–5394. doi:10.1002/adfm.201502265

  • Liu W, Liu N, Shi Y et al (2015) A wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer. J Mater Chem A 3:13461–13467. doi:10.1039/C5TA01105A

    Article  Google Scholar 

  • Long C, Qi D, Wei T et al (2014) Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv Funct Mater 24:3953–3961. doi:10.1002/adfm.201304269

    Article  Google Scholar 

  • Senthilkumar B, Khan Z, Park S et al (2015) Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J Mater Chem A 3:21553–21561. doi:10.1039/C5TA04737D

    Article  Google Scholar 

  • Shen L, Wang J, Xu G et al (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5:n/a–n/a. doi:10.1002/aenm.201400977

  • Shi J, Li X, He G et al (2015) Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J Mater Chem A 3:20619–20626. doi:10.1039/C5TA04464B

    Article  Google Scholar 

  • Subramani K, Sudhan N, Divya R, Sathish M (2017) All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7:6648–6659. doi:10.1039/C6RA27331A

    Article  Google Scholar 

  • Wu L, Hao L, Pang B et al (2017) MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors. J Mater Chem A 5:4629–4637. doi:10.1039/C6TA10757E

    Article  Google Scholar 

  • Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816–n/a. doi:10.1002/aenm.201300816

  • Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88. doi:10.1039/C2NR32040A

    Article  Google Scholar 

  • Zhou Y, Lachman N, Ghaffari M et al (2014a) A high performance hybrid asymmetric supercapacitor via nano-scale morphology control of graphene, conducting polymer, and carbon nanotube electrodes. J Mater Chem A 2:9964–9969. doi:10.1039/C4TA01785D

    Article  Google Scholar 

  • Zhou Y, Xu H, Lachman N et al (2014b) Advanced asymmetric supercapacitor based on conducting polymer and aligned carbon nanotubes with controlled nanomorphology. Nano Energy 9:176–185. doi:10.1016/j.nanoen.2014.07.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samantara, A.K., Ratha, S. (2018). Asymmetric and Hybrid Supercapacitor. In: Materials Development for Active/Passive Components of a Supercapacitor. SpringerBriefs in Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-7263-5_4

Download citation

Publish with us

Policies and ethics