Skip to main content

Three Dimensional Deformation Retrieval in GEO D-InSAR

  • Chapter
  • First Online:

Abstract

GEO SAR has characteristics of short revisit time of less than one day, extended coverage area with even larger than 1000 km and long coverage time of several hours for the scene of interest, and thus can provide data of a certain region of interest with lots of view angles. Consequently, employing GEO SAR for three-dimensional (3D) deformation retrieval can effectively address the drawbacks in LEO SAR cases, which are the lack of available data and the limited deformation retrieval accuracy. In this chapter, we first give some brief explanation about the reason why we should conduct 3D deformation retrieval instead of the simple one-dimensional (1D) line-of-sight (LOS) deformation measurement. Then, we focus on the GEO SAR 3D deformation retrieval by multi-angle measurement. To obtain the optimal accuracy, we consider the reasonable criterion to evaluate the 3D deformation measurement accuracy and implement it for optimal sub-aperture selection in 3D deformation retrieval.

© 2017 Science China Press and Springer-Verlag Berlin Heidelberg. Reprinted, with permission, from Science China Information Sciences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Massonnet D, Rossi M, Carmona C, Ardagna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  2. Ferretti A, Guarnieri AM, Prati C, Rocca F, Massonnet D (2007) InSAR principles. ESA Publications, The Netherlands

    Google Scholar 

  3. Huang R, Fan X (2013) The landslide story. Nat Geosci 6:325–326

    Article  Google Scholar 

  4. Li YH, Hu C, Long T (2015) A novel SAR interferometry processing method in high resolution spotlight SAR. J Electromag Waves Appl 29(13):1786–1803

    Article  Google Scholar 

  5. Michel R, Avouac JP, Taboury J (1999) Measuring ground displacements from SAR amplitude images: application to the landers earthquake. Geophys Res Lett 26(7):875–878

    Article  Google Scholar 

  6. Wright TJ, Parsons BE, Lu Z (2004) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31(1):L01607

    Article  Google Scholar 

  7. Ansari H, Zan FD, Parizzi A, Eineder M, Goel K, Adam N (2016) Measuring 3-D surface motion with future SAR systems based on reflector antennae. IEEE Geosci Remote Sens Lett 13(2):272–276

    Article  Google Scholar 

  8. Gudmundsson S, Sigmundsson F (2002) Three-dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data. J Geophys Res 107(B10):2250

    Article  Google Scholar 

  9. Samsonov S, Tiampo K (2006) Analytical optimization of a DInSAR and GPS dataset for derivation of three-dimensional surface motion. IEEE Geosci Remote Sens Lett 3(1):107–111

    Article  Google Scholar 

  10. Bechor NBD, Zebker HA (2006) Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 33(16):L16311

    Article  Google Scholar 

  11. Jung HS, Lu Z, Shepherd A, Wright T (2015) Simulation of the SuperSAR multi-azimuth synthetic aperture radar imaging system for precise measurement of three-dimensional earth surface displacement. IEEE Trans Geosci Remote Sens 53(11):6196–6206

    Article  Google Scholar 

  12. Jung HS, Won JS, Kim SW (2009) An improvement of the performance of multiple-aperture SAR interferometry (MAI). IEEE Trans Geosci Remote Sens 47(8):2859–2869

    Article  Google Scholar 

  13. Jo MJ, Jung HS, Won JS (2015) Detecting the source location of recent summit inflation via three-dimensional InSAR observation of Kilauea Volcano. Remote Sens 7(11):14386–14402

    Article  Google Scholar 

  14. Jung HS, Lee DT, Lu Z, Won JS (2013) Ionospheric correction of SAR interferograms by multiple-aperture interferometry. IEEE Trans Geosci Remote Sens 51(5):3191–3199

    Article  Google Scholar 

  15. Jo MJ, Jung HS, Won JS, Poland MP, Miklius A, Lu Z (2014) Measurement of slow-moving along-track displacement from an efficient multiple—aperture SAR interferometry (MAI) stacking. IEEE Trans Geosci Remote Sens 52(6):3421–3427

    Article  Google Scholar 

  16. Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q (2012) 3D coseismic displacement of 2010 Darfield, New Zealand Earthquake estimated from multi-aperture InSAR and D-InSAR measurement. J Geophys Res 11:1029–1041

    Google Scholar 

  17. Hu C, Li Y, Dong X, Wang R, Cui C (2017a) Optimal 3D deformation measuring in inclined geosynchronous orbit SAR differential interferometry. Sci China Inf Sci 60(6)

    Google Scholar 

  18. Hu C, Li Y, Dong X, Wang R, Cui C, Zhang B (2017b) Three-dimensional deformation retrieval in geosynchronous SAR by multiple-aperture interferometry processing: Theory and Performance Analysis. IEEE Trans Geosci Remote Sens 55(11):6150–6169

    Article  Google Scholar 

  19. Tomiyasu K (1978) Synthetic aperture radar in geosynchronous orbit. In: Proceedings of antennas and propagation society international symposium. College Park MD, USA, pp 42–45

    Google Scholar 

  20. Prati C, Rocca F, Giancola D, Monti A (1976) Passive geosynchronous SAR system reusing backscattered digital audio broadcasting signals. IEEE Trans Geosci Remote Sens 36:1973–1976

    Article  Google Scholar 

  21. Monti-Guarnieri A, Bombaci O, Catalano TF, Germani C, Koppel C, Rocca F, Wadge G (2015) ARGOS: a fractioned geosynchronous SAR. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2015.11.022

    Article  Google Scholar 

  22. NASA, JPL, Global Earthquake Satellite System, a 20 year plan to enable earthquake prediction, 2003, (http://www.jpl.nasa.gov), 20 May 2005

  23. Kou L, Wang X, Xiang M, Zhu M (2012) Interferometric estimation of three-dimensional surface deformation using geosynchronous circular SAR. IEEE Trans Aerosp Electron Syst 48(2):1619–1635

    Article  Google Scholar 

  24. Stramondo S, Del Frate F, Picchiani M, Schiavon G (2011) Seismic source quantitative parameters retrieval from InSAR data and neural networks. IEEE Trans Geosci Remote Sens 49(1):96–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Long .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Long, T., Hu, C., Ding, Z., Dong, X., Tian, W., Zeng, T. (2018). Three Dimensional Deformation Retrieval in GEO D-InSAR. In: Geosynchronous SAR: System and Signal Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-7254-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7254-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7253-6

  • Online ISBN: 978-981-10-7254-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics