Skip to main content

Analysis of Temporal-Spatial Variant Atmospheric Effects on GEO SAR

  • Chapter
  • First Online:
Geosynchronous SAR: System and Signal Processing

Abstract

Due to the ultra-long integration time and large coverage characteristics of geosynchronous synthetic aperture radar (GEO SAR), the atmospheric frozen model in the traditional low Earth orbit SAR (LEO SAR) imaging fails in GEO SAR. The temporal-spatial variation of troposphere and ionosphere should be taken into account for the GEO SAR imaging. Based on the accurate GEO SAR signal model, the two-dimensional spectrum of GEO SAR signal in the context of temporal-spatial variant troposphere and background ionosphere are derived, and then the two-dimensional image shift and defocusing are investigated. The boundary conditions of relevant effects are analyzed and summarized which are related to the status of troposphere and background ionosphere, the GEO SAR imaging geometry and the integration time dependent on the resolution requirement. GEO SAR is also sensitive to ionospheric scintillation which causes the amplitude and phase fluctuations of signals. The corresponding degradation will have a different pattern from LEO SAR. The azimuth point spread function considering the scintillation sampling model is constructed. Then, based on the measurable statistical parameters of ionospheric scintillation, performance is quantitatively analyzed. The analysis suggests that in GEO SAR imaging the azimuth integrated side lobe ratio deteriorates severely, while the degradations of the azimuth resolution and azimuth peak-to-sidelobe ratio are negligible when scintillation occurs.

© 2017 IEEE. Reprinted, with permission, from Performance Analysis of L-Band Geosynchronous SAR Imaging in the Presence of Ionospheric Scintillation, IEEE Transactions on Geoscience and Remote Sensing, vol.55, no. 1, pp. 159–172, 2017 and Background Ionosphere Effects on Geosynchronous SAR Focusing: Theoretical Analysis and Verification Based on the BeiDou Navigation Satellite System (BDS), IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 3, pp. 1143–1162, 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun J, Bi Y, Wang Y, Hong W (2011) High resolution SAR performance limitation by the change of tropospheric refractivity. In: Proceedings of 2011 IEEE CIE International conference on radar, 24–27 Oct 2011. pp 1448–1451. https://doi.org/10.1109/cie-radar.2011.6159833

  2. Muschinski A, Dickey FM, Doerry AW (2005) Possible effects of clear-air refractive-index perturbations on SAR images, pp 25–33

    Google Scholar 

  3. Ishimaru A, Kuga Y, Liu J, Kim Y, Freeman T (2016) Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz. Radio Sci 34(1):257–268

    Article  Google Scholar 

  4. Gao Y, Hu C, Dong X, Long T (2012) Accurate system parameter calculation and coverage analysis in GEO SAR. In: European conference on synthetic aperture radar, pp 607–610

    Google Scholar 

  5. Meyer F, Bamler R, Jakowski N, Fritz T (2006) The potential of low-frequency SAR systems for mapping ionospheric TEC distributions. IEEE Geosci Remote Sens Lett 3(4):560–564

    Article  Google Scholar 

  6. Meyer FJ (2011) Performance requirements for ionospheric correction of low-frequency SAR data. IEEE Trans Geosci Remote Sens 49(10):3694–3702

    Article  Google Scholar 

  7. Prati C, Rocca F, Giancola D, Guarnieri AM (1998) Passive geosynchronous SAR system reusing backscattered digital audio broadcasting signals. IEEE Trans Geosci Remote Sens 36(6):1973–1976

    Article  Google Scholar 

  8. Tian Y, Hu C, Dong X, Zeng T, Long T, Lin K, Zhang X (2015) Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging. IEEE Geosci Remote Sens Lett 12(4):721–725

    Article  Google Scholar 

  9. Xu Z, Wu J, Wu Z (2004) A survey of ionospheric effects on space-based radar. Waves Random Media 14(2):S189–S273

    Article  Google Scholar 

  10. Xu ZW, Wu J, Wu ZS (2008) Potential effects of the ionosphere on space-based SAR imaging. IEEE Trans Antennas Propag 56(7):1968–1975

    Article  MathSciNet  Google Scholar 

  11. Qi RY, Jin YQ (2007) Analysis of the effects of faraday rotation on spaceborne polarimetric SAR observations at P-Band. IEEE Trans Geosci Remote Sens 45(5):1115–1122

    Article  Google Scholar 

  12. Liu J, Kuga Y, Ishimaru A, Pi X (2003) Ionospheric effects on SAR imaging: a numerical study. IEEE Trans Geosci Remote Sens 41(5):939–947

    Article  Google Scholar 

  13. Aarons J (1995) 50 years of radio-scintillation observations. IEEE Antennas Propag Mag 39(6):7–12

    Article  Google Scholar 

  14. Aarons J, Whitney HE, Allen RS (2005) Global morphology of ionospheric scintillations. Proc IEEE 59(2):159–172

    Article  Google Scholar 

  15. Bhattacharyya A, Basu S, Groves K, Valladares C, Sheehan R (2002) Space weather effects on the dynamics of equatorial f region irregularities. In: 34th COSPAR Scientific Assembly, pp SIA 20-21–SIA 20-27

    Google Scholar 

  16. Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst AES-23 (3):325–331. https://doi.org/10.1109/taes.1987.310829

    Article  Google Scholar 

  17. Cheng H, Teng L, Tao Z, Feifeng L, Zhipeng L (2011) The accurate focusing and resolution analysis method in geosynchronous SAR. IEEE Trans Geosci Remote Sens 49(10):3548–3563. https://doi.org/10.1109/TGRS.2011.2160402

    Article  Google Scholar 

  18. Pullen S, Opshaug G, Hansen A, Walter T, Enge P, Parkinson B (1998) A preliminary study of the effect of ionospheric scintillation on WAAS user availability in equatorial regions. In: ION GPS-98, pp 687–699

    Google Scholar 

  19. Li G, Ning B, Yuan H (2007) Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region. Earth Planets Space 59(4):279–285

    Article  Google Scholar 

  20. Pan L, Yin P (2014) Analysis of polar ionospheric scintillation characteristics based on GPS data. In: China Satellite Navigation Conference 2014, pp 11–18

    Google Scholar 

  21. Singleton DG (1974) Power spectra of ionospheric scintillations. J Atmos Terr Phys 36(1):113–133

    Article  Google Scholar 

  22. Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA (2016) Early results from the DNA wideband satellite experiment—complex-signal scintillation. Radio Sci 13(1):167–187

    Article  Google Scholar 

  23. Forte B, Radicella SM (2002) Problems in data treatment for ionospheric scintillation measurements

    Article  Google Scholar 

  24. Ganguly S, Jovancevic A, Brown A, Kirchner M, Zigic S, Beach T, Groves KM (2002) Ionospheric scintillation monitoring and mitigation using a software GPS receiver. Radio Sci 39(1):241–262

    Google Scholar 

  25. Yannick B, Pierrick H (2011) A global ionosphere scintillation propagation model for equatorial regions. J Space Weather Space Clim 1(1):315–322

    Google Scholar 

  26. Humphreys T (2007) Modeling ionospheric scintillation and its effects on GPS carrier tracking loops and two other applications of modeling and estimation

    Google Scholar 

  27. Wernik AW, Alfonsi L, Materassi M (2004) Ionospheric irregularities, scintillation and its effect on systems. Acta Geophysica Polonica 52(2):237–249

    Google Scholar 

  28. Béniguel Y, Romano V, Alfonsi L, Aquino M (2009) Ionospheric scintillation monitoring and modelling. Ann Geophys 52(3–4):391–416

    Google Scholar 

  29. Yeh KC, Liu CH (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70(4):324–360

    Article  Google Scholar 

  30. Humphreys TE, Psiaki ML, Kintner PM (2010) Modeling the effects of ionospheric scintillation on GPS carrier phase tracking. IEEE Trans Aerosp Electron Syst 46(4):1624–1637

    Article  Google Scholar 

  31. Rogers NC, Cannon PS (2009) The synthetic aperture radar transionospheric radio propagation simulator (SAR-TIRPS). In: The Institution of Engineering and Technology International conference on ionospheric radio systems and techniques, pp 1–5

    Google Scholar 

  32. Cumming IG, Wong HC (1980) Digital processing of synthetic aperture radar data: algorithms and implementation. In: International radar conference, pp 168–175

    Google Scholar 

  33. Neo YL, Wong F, Cumming IG (2007) A two-dimensional spectrum for bistatic SAR processing using series reversion. IEEE Geosci Remote Sens Lett 4(1):93–96. https://doi.org/10.1109/LGRS.2006.885862

    Article  Google Scholar 

  34. Hu C, Li Y, Dong X, Wang R, Ao D (2018) Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Transactions on Geoscience and Remote Sensing 55(1):159–172

    Google Scholar 

  35. Hu C, Tian Y, Yang X, Zeng T, Long T, Dong X (2016) Background ionosphere effects on geosynchronous SAR focusing: theoretical analysis and verification based on the BeiDou navigation satellite system (BDS). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(3):1143–1162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Long .

Appendices

Appendix 1: Derivation of the Two-Dimensional Spectrum of the GEO SAR Signal Under the Effects of Temporal-Spatial Variant Background Ionosphere

Through the azimuth Fourier transform of the echo signal in (4.33), it is able to derive the analytical expression of the two-dimensional GEO SAR signal spectrum considering the background ionosphere. Since both the GEO SAR accurate slant range and the TEC variations are expressed in the form of high-order polynomials, it will be difficult to use the principle of stationary phase (POSP) to obtain the stationary phase point and then derive the two-dimensional spectrum. Herein, the series inversion [33] method is used to derive the two-dimensional spectrum of the GEO SAR signal in the context of the background ionosphere.

Firstly, the echo signal in (4.33) can be rewritten as

$$\begin{aligned} S\left( {f_{r} ,t_{a} } \right) & = A_{r} \left( {f_{r} } \right) \cdot A_{a} \left( {t_{a} } \right) \cdot \,\exp \left( { - j\frac{{\pi f_{r}^{2} }}{{k_{r} }}} \right) \\ & \cdot \,\exp \left[ { - j\frac{{4\pi \left( {f_{r} + f_{0} } \right)}}{c}\left( {r\left( {t_{a} } \right) + \frac{{40.3 \cdot TEC\left( {t_{a} } \right)}}{{\left( {f_{r} + f_{0} } \right)^{2} }}} \right)} \right] \\ \end{aligned}$$
(4.95)

Assuming \(R\left( {t_{a} } \right) = r\left( {t_{a} } \right) + \Delta r_{iono} \left( {t_{a} } \right) = r\left( {t_{a} } \right) + {{40.3 \cdot TEC\left( {t_{a} } \right)} \mathord{\left/ {\vphantom {{40.3 \cdot TEC\left( {t_{a} } \right)} {\left( {f_{0} + f_{r} } \right)^{2} }}} \right. \kern-0pt} {\left( {f_{0} + f_{r} } \right)^{2} }}\), wherein, \(r\left( {t_{a} } \right)\) is the slant range history in the absence of ionosphere, and \(\Delta r_{iono} \left( {t_{a} } \right) = {{40.3 \cdot TEC\left( {t_{a} } \right)} \mathord{\left/ {\vphantom {{40.3 \cdot TEC\left( {t_{a} } \right)} {\left( {f_{0} + f_{r} } \right)^{2} }}} \right. \kern-0pt} {\left( {f_{0} + f_{r} } \right)^{2} }}\) is the slant range difference introduced by the ionosphere. The specific expressions of \(r\left( {t_{a} } \right)\) and \(\Delta r_{iono} \left( {t_{a} } \right)\) are written as follows

$$\begin{aligned} r\left( {t_{a} } \right) & = = r_{0} + q_{1} \cdot t_{a} + q_{2} \cdot t_{a}^{2} + q_{3} \cdot t_{a}^{3} + \cdots \\ \Delta r_{iono} \left( {t_{a} } \right) & = \frac{{40.3 \cdot TEC_{0} }}{{\left( {f_{0} + f_{r} } \right)^{2} }} + \frac{{40.3 \cdot k_{1} }}{{\left( {f_{0} + f_{r} } \right)^{2} }} \cdot t_{a} + \frac{{40.3 \cdot k_{2} }}{{\left( {f_{0} + f_{r} } \right)^{2} }} \cdot t_{a}^{2} + \frac{{40.3 \cdot k_{3} }}{{\left( {f_{0} + f_{r} } \right)^{2} }} \cdot t_{a}^{3} + \cdots \\ \end{aligned}$$
(4.96)

According to the properties of Taylor series expansion, then

$$\frac{1}{{\left( {f_{r} + f_{0} } \right)^{2} }} = \frac{1}{{f_{0}^{2} }} - \frac{2}{{f_{0}^{3} }} \cdot f_{r} + \frac{3}{{f_{0}^{4} }} \cdot f_{r}^{2} - \frac{4}{{f_{0}^{5} }} \cdot f_{r}^{3} + \cdots$$
(4.97)

As the first-order, second-order and third-order terms of \(\Delta r_{iono} \left( {t_{a} } \right)\) are relatively small, the constant term in (4.97) for those three were approximated. Hence, \(\Delta r_{iono} \left( {t_{a} } \right)\) was simplified as

$$\Delta r_{iono} \left( {t_{a} } \right) = \frac{{40.3 \cdot TEC_{0} }}{{\left( {f_{0} + f_{r} } \right)^{2} }} + \frac{{40.3 \cdot k_{1} }}{{f_{0}^{2} }} \cdot t_{a} + \frac{{40.3 \cdot k_{2} }}{{f_{0}^{2} }} \cdot t_{a}^{2} + \frac{{40.3 \cdot k_{3} }}{{f_{0}^{2} }} \cdot t_{a}^{3} + \cdots$$
(4.98)

\(R\left( {t_{a} } \right)\) can be denoted in the form as follows

$$R\left( {t_{a} } \right) = R_{0} + Q_{1} \cdot t_{a} + Q_{2} \cdot t_{a}^{2} + Q_{3} \cdot t_{a}^{3} + \cdots$$
(4.99)

where,

$$\begin{aligned} R_{0} & = r_{0} + \frac{{40.3 \cdot TEC_{0} }}{{\left( {f_{0} + f_{r} } \right)^{2} }}\quad Q_{1} = q_{1} + \frac{{40.3 \cdot k_{1} }}{{f_{0}^{2} }} \\ Q_{2} & = q_{2} + \frac{{40.3 \cdot k_{2} }}{{f_{0}^{2} }}\quad Q_{3} = q_{3} + \frac{{40.3 \cdot k_{3} }}{{f_{0}^{2} }} \\ \end{aligned}$$
(4.100)

Next, the series inversion theorem was utilized to derive the accurate two-dimensional spectrum of the GEO SAR signal in the context of the background ionosphere. In order to use the series inversion, \(s\left( {f_{r} ,t_{a} } \right)\) should be re-expressed as

$$s\left( {f_{r} ,t_{a} } \right){ = }s_{1} \left( {f_{r} ,t_{a} } \right) \cdot \,\exp \left( { - j\frac{{4 \cdot \pi \cdot \left( {f_{r} + f_{c} } \right)}}{c} \cdot Q_{1} \cdot t_{a} } \right)$$
(4.101)

In the subsequent derivation, it needs to firstly derive the two-dimensional spectrum of \(s_{1} \left( {f_{r} ,t_{a} } \right)\), and then use the following relations to calculate the two-dimensional spectrum of \(s\left( {f_{r} ,t_{a} } \right)\)

$$s_{1} \left( {f_{r} ,t_{a} } \right) \Leftrightarrow S_{1} \left( {f_{r} ,f_{a} } \right)$$
(4.102)
$$s_{1} \left( {f_{r} ,t_{a} } \right) \cdot \exp \left( { - j\frac{{4 \cdot \pi \cdot \left( {f_{r} + f_{c} } \right)}}{c} \cdot Q_{1} \cdot t_{a} } \right) \Leftrightarrow S_{1} \left( {f_{r} ,f_{a} + \frac{{2 \cdot \left( {f_{r} + f_{c} } \right)}}{c} \cdot Q_{1} } \right)$$
(4.103)
$$s\left( {f_{r} ,t_{a} } \right) \Leftrightarrow S\left( {f_{r} ,f_{a} } \right) = S_{1} \left( {f_{r} ,f_{a} + \frac{{2 \cdot \left( {f_{r} + f_{c} } \right)}}{c} \cdot Q_{1} } \right)$$
(4.104)

First of all, \(s_{1} \left( {f_{r} ,t_{a} } \right)\) was Fourier transformed, and its integral phase expression was

$$\psi = - \pi \cdot \frac{{f_{r}^{2} }}{\beta } - \frac{{4 \cdot \pi \cdot \left( {f_{r} + f_{c} } \right)}}{c} \cdot \left( {R_{0} + Q_{2} \cdot t_{a}^{2} + Q_{3} \cdot t_{a}^{3} + \cdots } \right) - 2\pi \cdot f_{a} \cdot t_{a}$$
(4.105)

Assuming \(\frac{\partial \psi }{{\partial t_{a} }} = 0\), then

$$\left( { - \frac{c}{{2\left( {f_{r} + f_{0} } \right)}}} \right) \cdot f_{a} = 2Q_{2} \cdot t_{a} + 3Q_{3} \cdot t_{a}^{2} + \cdots$$
(4.106)

Through the series inversion, it can get

$$t_{a} \left( {f_{a} } \right) = A_{1} \cdot \left( { - \frac{{c \cdot f_{a} }}{{2\left( {f_{r} + f_{0} } \right)}}} \right) + A_{2} \cdot \left( { - \frac{{c \cdot f_{a} }}{{2\left( {f_{r} + f_{0} } \right)}}} \right)^{2} + A_{3} \cdot \left( { - \frac{{c \cdot f_{a} }}{{2\left( {f_{r} + f_{0} } \right)}}} \right)^{3} + \cdots$$
(4.107)

where,

$$A_{1} = \frac{1}{{2Q_{2} }}\quad A_{2} = - \frac{{3Q_{3} }}{{8Q_{2}^{3} }}\quad A_{3} = \frac{{18Q_{3}^{2} - 8Q_{2} Q_{4} }}{{32Q_{2}^{5} }}$$
(4.108)

Substituting (4.108) into (4.107), and we can get the two-dimensional spectrum of \(s_{1} \left( {f_{r} ,t_{a} } \right)\)

$$\begin{aligned} S_{1} \left( {f_{a} ,f_{r} } \right) & = \sigma A_{a} \left( {f_{a} } \right)A_{r} \left( {f_{r} } \right) \cdot \,\exp \left( { - j \cdot \pi \frac{{f_{r}^{2} }}{\beta }} \right) \\ {\kern 1pt} & \quad \times \exp \left( { - j \cdot 2\pi \cdot \frac{{2\left( {f_{r} + f_{0} } \right)}}{c} \cdot \left( {r_{0} + \frac{{40.3 \cdot TEC_{0} }}{{\left( {f_{0} + f_{r} } \right)^{2} }}} \right)} \right) \\ & \quad \times \exp \left( {j \cdot 2\pi \cdot \frac{1}{{4 \cdot \left( {q_{2} + \frac{{40.3 \cdot k_{2} }}{{f_{0}^{2} }}} \right)}} \cdot \frac{c}{{2\left( {f_{r} + f_{0} } \right)}} \cdot f_{a}^{2} } \right) \\ & {\kern 1pt} \quad \times \exp \left( {j \cdot 2\pi \cdot \frac{{q_{3} + \frac{{40.3 \cdot k_{3} }}{{f_{0}^{2} }}}}{{8 \cdot \left( {q_{2} + \frac{{40.3 \cdot k_{2} }}{{f_{0}^{2} }}} \right)^{3} }} \cdot \left( {\frac{c}{{2\left( {f_{r} + f_{0} } \right)}}} \right)^{2} \cdot f_{a}^{3} } \right) \\ \end{aligned}$$
(4.109)

According to (4.104), it can derive the final two-dimensional spectrum expression of \(s\left( {f_{r} ,t_{a} } \right)\) as shown in (4.34).

Appendix 2: Klobuchar Model and TEC Calculation

In this chapter, Klobuchar Model [16] was used to calculate the ionospheric TEC values on the BD IGSO satellite propagation path. This model is particularly suitable for United States, China, Western Europe and other countries and regions at mid-latitudes. The eight ionospheric delay parameters and Klobuchar model were used to calculate the vertical ionospheric delay \(I_{z}^{{\prime }} \left( t \right)\) of the IGSO satellite signal in seconds, specifically expressed as follows

$$I^{\prime}_{z} (t) = \left\{ \begin{aligned} & 5 \times 10^{ - 9} + A_{2} \cos \left[ {\frac{2\pi (t - 50400)}{{A_{4} }}} \right],\quad \left| {t - 50400} \right| < A_{4} /4 \hfill \\ & 5 \times 10^{ - 9} \, ,\quad \left| {t - 50400} \right| \ge A_{4} /4 \hfill \\ \end{aligned} \right.$$
(4.110)

where t is the local time of the ionosphere at the IPP and its value is in the range of 0–86,400 in seconds. \(A_{2}\) is the magnitude of Klobuchar cosine curve in the day time, which is dependent on the \(\alpha_{1} \sim\alpha_{4}\) and the latitude of the IPP. \(A_{4}\) is the period of cosine curve in seconds, which is dependent on the \(\beta_{1} \sim\beta_{4}\) and the latitude of the IPP. The geographic latitude of the IPP is also determined by the user geographic latitude, satellite azimuth and geocentric aperture angle.

As shown in Fig. 4.31, the IPP at the time of t1 was located in Point A, and the satellite was moving forward at the time of t2, while the IPP was located in Point B. Then, the segment AB was the length of the IPP of the IGSO satellite.

Fig. 4.31
figure 31

Relations between the local time and the satellite motion within the Klobuchar model

In the light of the equation of \(I_{B1I} (t) = \frac{1}{{\sqrt {1 - \left( {\frac{R}{R + h}\cos E} \right)^{2} } }}I_{z}^{\prime } (t)\), it is able to convert the vertical ionospheric delay \(I_{z}^{\prime } (t)\) into the ionospheric delay \(I_{B1I} (t)\) along the signal propagation path.

In accordance with the relations between the ionospheric delay \(I_{B1I} (t)\) along the signal propagation path and TEC, it is able to calculate the TEC values on the propagation path at the time of t by the following equation

$$TEC\left( t \right) = \frac{{I_{B1I} (t) \cdot cf^{2} }}{40.26}$$
(4.111)

Appendix 3: Derivation of (4.64)

Here we provide the derivation of (4.64). First, we assume \(A\) fits Nakagami-m distribution and its variance can be calculated as

$$\begin{aligned} \sigma_{A}^{2} & = E\left( {A^{2} } \right) - \left[ {E\left( A \right)} \right]^{2} \\ & =\Omega - \left[ {E\left( A \right)} \right]^{2} \\ \end{aligned}$$
(4.112)

where \(\Omega = E\left( {A^{2} } \right)\).

According to the definition of mathematical expectation, \(E\left( A \right)\) can be written as

$$\begin{aligned} E\left( A \right) & = \int\limits_{ - \infty }^{ + \infty } {xf(x,m,\Omega )dx} \\ & = \int\limits_{ - \infty }^{ + \infty } {x\left[ {\frac{{2m^{m} }}{{\Gamma \left( m \right)\Omega ^{m} }}x^{2m - 1} \exp \left( { - \frac{m}{\Omega }x^{2} } \right)} \right]dx} \\ \end{aligned}$$
(4.113)

where \(f(x,m,\Omega )\) is the probability density function of Nakagami-m distribution, \(x\) is the variable and \(m = {1 \mathord{\left/ {\vphantom {1 {S_{4}^{2} }}} \right. \kern-0pt} {S_{4}^{2} }}\).

With a change of variable, (4.113) may be re-written as

$$E\left( A \right) = \sqrt {\frac{\Omega }{m}} \frac{1}{{\Gamma \left( m \right)}}2\int\limits_{ - \infty }^{ + \infty } {\left( {\sqrt {\frac{m}{\Omega }} x} \right)^{{\left( {2m + 1} \right) - 1}} \exp \left( { - \left[ {\sqrt {\frac{m}{\Omega }} x} \right]^{2} } \right)d\left( {\sqrt {\frac{m}{\Omega }} x} \right)}$$
(4.114)

Considering the definition of Gamma function, which is shown as

$$\Gamma \left( n \right) = 2\int\limits_{0}^{ + \infty } {t^{2n - 1} } \exp \left( { - t^{{^{2} }} } \right)dt$$
(4.115)

Based on (4.115) and \(x > 0\), (4.114) can be written as

$$E\left( A \right) = \sqrt {\frac{\Omega }{m}} \frac{{\Gamma \left( {m + \frac{1}{2}} \right)}}{{\Gamma \left( m \right)}}$$
(4.116)

We consider (4.116) in (4.112) and then simplify it. Finally, we obtain (4.64).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Long, T., Hu, C., Ding, Z., Dong, X., Tian, W., Zeng, T. (2018). Analysis of Temporal-Spatial Variant Atmospheric Effects on GEO SAR. In: Geosynchronous SAR: System and Signal Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-7254-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7254-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7253-6

  • Online ISBN: 978-981-10-7254-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics