Skip to main content

Introduction

  • Chapter
  • First Online:
  • 731 Accesses

Abstract

Radar is an electronic device that uses electromagnetic waves to detect targets. Early radar systems used time delays to measure the distance between the radar and the target, and they determined the direction of the target through the antenna pointing, and then used the Doppler shift to detect target velocity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Curlander JC, Macdonough RN (1991) Synthetic aperture radar: systems and signal processing. Wiley, New York

    MATH  Google Scholar 

  2. Cumming IG, Wong FH (2005) Digital processing of synthetic aperture radar data. Artech House 1(2):3

    Google Scholar 

  3. Zan FD, Guarnieri AM (2006) TOPSAR: terrain observation by progressive scans. IEEE Trans Geosci Remote Sens 44(9):2352–2360. https://doi.org/10.1109/TGRS.2006.873853

    Article  Google Scholar 

  4. Younis M, Fischer C, Wiesbeck W (2003) Digital beamforming in SAR systems. IEEE Trans Geosci Remote Sens 41(7):1735–1739. https://doi.org/10.1109/TGRS.2003.815662

    Article  Google Scholar 

  5. Krieger G, Gebert N, Moreira A (2004) Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci Remote Sens Lett 1(4):260–264. https://doi.org/10.1109/LGRS.2004.832700

    Article  Google Scholar 

  6. Gebert N, Krieger G, Moreira A (2009) Digital beamforming on receive: techniques and optimization strategies for high-resolution wide-swath SAR imaging. IEEE Trans Aerosp Electron Syst 45(2):564–592. https://doi.org/10.1109/TAES.2009.5089542

    Article  Google Scholar 

  7. Jordan RL (1980) The seasat-A synthetic aperture radar system. IEEE J Oceanic Eng 5(2):154–164. https://doi.org/10.1109/JOE.1980.1145451

    Article  Google Scholar 

  8. Thompson T, Laderman (1976) A SEASAT-A synthetic aperture radar: radar system implementation. In: Oceans, pp 247–251

    Google Scholar 

  9. Huang H, Zhang Y, Dong Z (2015) Spaceborne synthetic aperture radar interferometry noel technology. China Science Publisher (in Chinese)

    Google Scholar 

  10. Tomiyasu K (1978) Synthetic aperture radar in geosynchronous orbit. In: Antennas and propagation society international symposium, May 1978, pp 42–45. https://doi.org/10.1109/aps.1978.1147948

  11. Tomiyasu K, Pacelli JL (1983) Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans Geosci Remote Sens GE-21 (3):324–329. https://doi.org/10.1109/tgrs.1983.350561

    Article  Google Scholar 

  12. Murphy LM (1987) Synthetic aperture radar imaging from geosynchronous orbit-concept, feasibility and applications. In: Brighton international astronautical federation congress

    Google Scholar 

  13. Guttrich GL, Sievers WE, Tomljanovich NM (1997) Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception. In: Proceedings of the 1997 IEEE national radar conference, 13–15 May 1997, pp 126–131. https://doi.org/10.1109/nrc.1997.588225

  14. Madsen SN, Edelstein W, DiDomenico LD, LaBrecque J (2001) A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture. In: Geoscience and remote sensing symposium, 2001. IGARSS ‘01. IEEE 2001 international, 2001, vol 441, pp 447–449. https://doi.org/10.1109/igarss.2001.976185

  15. Madsen SN, Chen C, Edelstein W (2002) Radar options for global earthquake monitoring. In: Geoscience and remote sensing symposium, 2002. IGARSS ‘02. IEEE international, 2002, vol 1483, pp 1483–1485. https://doi.org/10.1109/igarss.2002.1026156

  16. Edelstein WN, Madsen SN, Moussessian A, Chen C (2005) Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits, pp 195–203

    Google Scholar 

  17. Moussessian A, Chen C, Edelstein W, Madsen S, Rosen P (2005) System concepts and technologies for high orbit SAR. In: Microwave symposium digest, 2005 IEEE MTT-S international, 12–17 June 2005, 4 p. https://doi.org/10.1109/mwsym.2005.1517017

  18. NASA J (2003) Global earthquake satellite system: a 20-year plan to enable earthquake prediction

    Google Scholar 

  19. Prati C, Rocca F, Giancola D, Guarnieri AM (1998) Passive geosynchronous SAR system reusing backscattered digital audio broadcasting signals. IEEE Trans Geosci Remote Sens 36(6):1973–1976

    Article  Google Scholar 

  20. Hobbs S, Guarnieri AM, Wadge G, Schulz D (2014) GeoSTARe initial mission design. In: Geoscience and remote sensing symposium (IGARSS), 2014 IEEE international, 13–18 July 2014, pp 92–95. https://doi.org/10.1109/igarss.2014.6946363

  21. Rogers NC, Quegan S, Jun SuK, Papathanassiou KP (2014) Impacts of ionospheric scintillation on the BIOMASS P-Band satellite SAR. IEEE Trans Geosci Remote Sens 52(3):1856–1868. https://doi.org/10.1109/TGRS.2013.2255880

    Article  Google Scholar 

  22. Hobbs S, Convenevole C, Guarnieri AM, Wadge G (2016) Geostare system performance assessment methodology. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS), 10–15 July 2016, pp 1404–1407. https://doi.org/10.1109/igarss.2016.7729359

  23. Wadge G, Guarnie AM, Hobbs SE, Schul D (2014) Potential atmospheric and terrestrial applications of a geosynchronous radar. In: 2014 IEEE geoscience and remote sensing symposium, 13–18 July 2014, pp 946–949. https://doi.org/10.1109/igarss.2014.6946582

  24. Hobbs S, Mitchell C, Forte B, Holley R, Snapir B, Whittaker P (2014) System design for geosynchronous synthetic aperture radar missions. IEEE Trans Geosci Remote Sens 52(12):7750–7763. https://doi.org/10.1109/TGRS.2014.2318171

    Article  Google Scholar 

  25. Bruno D, Hobbs SE, Ottavianelli G (2006) Geosynchronous synthetic aperture radar: concept design, properties and possible applications. Acta Astronaut 59(1):149–156. https://doi.org/10.1016/j.actaastro.2006.02.005

    Article  Google Scholar 

  26. Bruno D, Hobbs SE (2010) Radar imaging from geosynchronous orbit: temporal decorrelation aspects. IEEE Transac Geosci Remote Sens 48(7):2924–2929. https://doi.org/10.1109/TGRS.2010.2042062

    Article  Google Scholar 

  27. Guarnieri AM, Rocca F, Ibars AB (2009) Impact of atmospheric water vapor on the design of a Ku band geosynchronous SAR system. In: 2009 IEEE international geoscience and remote sensing symposium, 12–17 July 2009, pp II-945–II-948. https://doi.org/10.1109/igarss.2009.5418254

  28. Rodon JR, Broquetas A, Makhoul E, Guarnieri AM, Rocca F (2012) Results on spatial-temporal atmospheric phase screen retrieval from long-term GEOSAR acquisition. In: Geoscience and remote sensing symposium (IGARSS), 2012 IEEE international. IEEE, pp 3289–3292

    Google Scholar 

  29. Ruiz-Rodon J, Broquetas A, Makhoul E, Monti Guarnieri A, Rocca F (2014) Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation. IEEE Transac Geosci Remote Sens 52(10):6379–6391. https://doi.org/10.1109/TGRS.2013.2296357

    Article  Google Scholar 

  30. Ruiz Rodon J, Broquetas A, Monti Guarnieri A, Rocca F (2013) Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation. IEEE Transac Geosci Remote Sens 51(8):4397–4404. https://doi.org/10.1109/TGRS.2013.2242202

    Article  Google Scholar 

  31. Guarnieri AM, Tebaldini S, Rocca F, Broquetas A (2012) GEMINI: Geosynchronous SAR for earth monitoring by interferometry and imaging. In: Geoscience and remote sensing symposium, pp 210–213

    Google Scholar 

  32. Monti Guarnieri A, Broquetas A, Recchia A, Rocca F, Ruiz-Rodon J (2015) Advanced radar geosynchronous observation system: ARGOS. Geosci Remote Sens Lett IEEE 12(7):1406–1410. https://doi.org/10.1109/LGRS.2015.2404214

    Article  Google Scholar 

  33. Guarnieri AM, Bombaci O, Catalano TF, Germani C, Koppel C, Rocca F, Wadge G (2015) ARGOS: a fractioned geosynchronous SAR. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2015.11.022

  34. Tian W, Hu C, Zeng T, Ding Z (2010) Several special issues in GEO SAR system. In: 2010 8th European conference on Synthetic aperture radar (EUSAR), 7–10 June 2010, pp 1–4

    Google Scholar 

  35. Dong X, Yangte G, Hu C, Zeng T, Chao D (2011) Effects of earth rotation on GEO SAR characteristics analysis. In: Proceedings of 2011 IEEE CIE international conference on radar, 24–27 Oct 2011, pp 34–37. https://doi.org/10.1109/cie-radar.2011.6159469

  36. Cheng H, Teng L, Tao Z, Feifeng L, Zhipeng L (2011) The accurate focusing and resolution analysis method in geosynchronous SAR. IEEE Trans Geosci Remote Sens 49(10):3548–3563. https://doi.org/10.1109/TGRS.2011.2160402

    Article  Google Scholar 

  37. Teng L, Xichao D, Cheng H, Zeng T (2011) A new method of zero-doppler centroid control in GEO SAR. Geosci Remote Sens Lett IEEE 8(3):512–516. https://doi.org/10.1109/LGRS.2010.2089969

    Article  Google Scholar 

  38. Ye T, Cheng H, Xichao D, Tao Z, Teng L, Kuan L, Xinyu Z (2015) Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging. Geosci Remote Sens Lett IEEE 12(4):721–725. https://doi.org/10.1109/LGRS.2014.2360235

    Article  Google Scholar 

  39. Hu C, Tian Y, Yang X, Zeng T, Long T, Dong X (2016) Background ionosphere effects on geosynchronous SAR focusing: theoretical analysis and verification based on the BeiDou navigation satellite system (BDS). IEEE J Sel Top Appl Earth Observations Remote Sens 9(3):1143–1162. https://doi.org/10.1109/JSTARS.2015.2475283

    Article  Google Scholar 

  40. Hu C, Li Y, Dong X, Ao D (2016) Avoiding the ionospheric scintillation interference on geosynchronous SAR by orbit optimization. IEEE Geosci Remote Sens Lett (99):1–5. https://doi.org/10.1109/lgrs.2016.2603230

  41. Hu C, Li Y, Dong X, Wang R, Ao D (2016) Performance analysis of L-Band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Transac Geosci Remote Sens (99):1–14. https://doi.org/10.1109/tgrs.2016.2602939

  42. Dong X, Hu C, Tian Y, Tian W, Li Y, Long T (2016) Experimental study of ionospheric impacts on geosynchronous SAR using GPS signals. IEEE J Sel Top Appl Earth Observations Remote Sens 9(6):2171–2183. https://doi.org/10.1109/JSTARS.2016.2537401

    Article  Google Scholar 

  43. Hu C, Tian Y, Zeng T, Long T, Dong X (2016) Adaptive secondary range compression algorithm in geosynchronous SAR. IEEE J Sel Top Appl Earth Observations Remote Sens 9(4):1397–1413. https://doi.org/10.1109/JSTARS.2015.2477317

    Article  Google Scholar 

  44. Liu F, Hu C, Zeng T, Long T, Jin L (2010) A novel range migration algorithm of GEO SAR echo data. In: 2010 IEEE international geoscience and remote sensing symposium, 25–30 July 2010, pp 4656–4659. https://doi.org/10.1109/igarss.2010.5651127

  45. Cheng H, Zhipeng L, Teng L (2012) An improved CS algorithm based on the curved trajectory in geosynchronous SAR. IEEE J Sel Top Appl Earth Observations Remote Sens 5(3):795–808. https://doi.org/10.1109/JSTARS.2012.2188096

    Article  Google Scholar 

  46. Hu C, Long T, Tian Y (2013) An improved nonlinear chirp scaling algorithm based on curved trajectory in geosynchronous SAR. Prog Electromagnet Res 135:481–513

    Article  Google Scholar 

  47. Cheng H, Teng L, Zhipeng L, Tao Z, Ye T (2014) An improved frequency domain focusing method in geosynchronous SAR. IEEE Transac Geosci Remote Sens 52(9):5514–5528. https://doi.org/10.1109/TGRS.2013.2290133

    Article  Google Scholar 

  48. Min B, Yi L, Zi. Jing T, Meng. Dao X, Ya. Chao L (2011) Imaging algorithm for GEO SAR based on series reversion. In: Proceedings of 2011 IEEE CIE international conference on radar, 24–27 Oct 2011, pp 1493–1496. https://doi.org/10.1109/cie-radar.2011.6159844

  49. Li Z, Li C, Yu Z, Zhou J, Chen J (2011) Back projection algorithm for high resolution GEO-SAR image formation. In: 2011 IEEE international geoscience and remote sensing symposium, 24–29 July 2011, pp 336–339. https://doi.org/10.1109/igarss.2011.6048967

  50. Ling L, Yinqing Z, Li J, Bing S (2008) Synchronization of geo spaceborne-airborne bistatic SAR. In: IGARSS 2008. IEEE international geoscience and remote sensing symposium, 7–11 July 2008, pp III-1209–III-1211. https://doi.org/10.1109/igarss.2008.4779574

  51. Sun Z, Wu J, Pei J, Li Z, Huang Y, Yang J (2016) Inclined geosynchronous spaceborne-airborne bistatic SAR: performance analysis and mission design. IEEE Trans Geosci Remote Sens 54(1):343–357

    Article  Google Scholar 

  52. Qiu X, Hu D, Ding C (2008) An improved NLCS algorithm with capability analysis for one-stationary BiSAR. IEEE Trans Geosci Remote Sens 46(10):3179–3186

    Article  Google Scholar 

  53. Wang J, Wang Y, Ge J (2010) Research on the equivalent nadir point of bistatic SAR with geostationary illuminator and LEO or UAV receivers. In: Synthetic aperture radar, 2009. Asian-Pacific conference on Apsar 2009, pp 227–230

    Google Scholar 

  54. Wang Y, Wang J, Zhang J, Ge J (2011) Research on the resolution of bistatic SAR with geostationary illuminator and LEO receiver. In: 3rd international Asia-Pacific conference on synthetic aperture radar (APSAR), pp 1–4

    Google Scholar 

  55. Wang J, Wang Y, Zhang J, Ge J (2013) Resolution calculation and analysis in bistatic SAR with geostationary illuminator. IEEE Geosci Remote Sens Lett 10(1):194–198

    Article  Google Scholar 

  56. Wu J, Li Z, Huang Y, Yang J (2014) Omega-K imaging algorithm for one-stationary bistatic SAR. IEEE Trans Aerosp Electron Syst 50(1):33–52

    Article  Google Scholar 

  57. Qi L, Tan WX, Lin Y, Wang YP, Hong W, Wu YR (2012) SAR raw data 2-D imaging model and simulation of GEOCSAR. In: IEEE CIE international conference on radar, pp 833–836

    Google Scholar 

  58. Kou L, Wang X, Xiang M, Zhu M (2011) Spatial baseline decorrelation of geosynchronous circular SAR interferometry. In: IEEE CIE international conference on radar, pp 1578–1581

    Google Scholar 

  59. Kou L, Zhu M, Wang X, Xiang M (2012) Interferometric three-dimensional displacement measurement using geosynchronous circular SAR

    Google Scholar 

  60. L-L Kou, X-Q Wang, M-S Xiang, J-S Chong, M-H Zhu (2011) Effect of orbital errors on the geosynchronous circular synthetic aperture radar imaging and interferometric processing. J Zhejiang Univ Sci C 12(5):404–416. https://doi.org/10.1631/jzus.C1000170

    Article  Google Scholar 

  61. Kou L, Xiang M, Wang X, Zhu M (2013) Tropospheric effects on L-band geosynchronous circular SAR imaging. IET Radar Sonar Navig 7(6):693–701

    Article  Google Scholar 

  62. Kou L, Xiang M, Wang X (2014) Ionospheric effects on three-dimensional imaging of L-band geosynchronous circular synthetic aperture radar. Radar Sonar Navig IET 8(8):875–884

    Article  Google Scholar 

  63. JPL (2003) Global earthquake satellite system: a 20-year plan to enable earthquake prediction

    Google Scholar 

  64. ESA (2017) Satellite missions database. https://directory.eoportal.org/web/eoportal/satellite-missions. Accessed 14 Nov. 2017

  65. Pitz W, Miller D (2010) The TerraSAR-X satellite. IEEE Trans Geosci Remote Sens 48(2):615–622. https://doi.org/10.1109/TGRS.2009.2037432

    Article  Google Scholar 

  66. Snoeij P, Attema E, Davidson M, Duesmann B, Floury N, Levrini G, Rommen B, Rosich B (2010) Sentinel-1 radar mission: status and performance. IEEE Aerosp Electron Syst Mag 25(8):32–39. https://doi.org/10.1109/MAES.2010.5552610

    Article  Google Scholar 

  67. Migliaccio M, Nunziata F, Montuori A, Paes RL (2012) Single-look complex COSMO-SkyMed SAR data to observe metallic targets at sea. IEEE J Sel Top Appl Earth Observations Remote Sens 5(3):893–901. https://doi.org/10.1109/JSTARS.2012.2184271

    Article  Google Scholar 

  68. Mateus P, Catalão J, Nico G (2017) Sentinel-1 interferometric SAR mapping of precipitable water vapor over a country-spanning area. IEEE Trans Geosci Remote Sens 55(5):2993–2999. https://doi.org/10.1109/TGRS.2017.2658342

    Article  Google Scholar 

  69. Iglesias R, Monells D, Centolanza G, Mallorquí JJ, Fabregas X, Aguasca A (2012) Landslide monitoring with spotlight TerraSAR-X DATA. In: 2012 IEEE international geoscience and remote sensing symposium, 22–27 July 2012, pp 1298–1301. https://doi.org/10.1109/igarss.2012.6351300

  70. Shimada M (2013) ALOS-2 science program. In: 2013 IEEE international geoscience and remote sensing symposium—IGARSS, 21–26 July 2013, pp 2400–2403. https://doi.org/10.1109/igarss.2013.6723303

  71. Brule L, Baeggli H (2001) RADARSAT-2 mission update. In: IGARSS 2001. Scanning the present and resolving the future. Proceedings. IEEE 2001 international geoscience and remote sensing symposium (Cat. No.01CH37217), 9–13 July 2001, vol 2586, pp 2581–2583. https://doi.org/10.1109/igarss.2001.978095

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Long .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Long, T., Hu, C., Ding, Z., Dong, X., Tian, W., Zeng, T. (2018). Introduction. In: Geosynchronous SAR: System and Signal Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-7254-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7254-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7253-6

  • Online ISBN: 978-981-10-7254-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics