Skip to main content

Adsorption Technique for Removal of Heavy Metals from Water and Possible Application in Wastewater-Fed Aquaculture

  • Chapter
  • First Online:
Wastewater Management Through Aquaculture

Abstract

The presence of various inorganic and organic pollutants in aquatic streams has readily increased as a result of industrialization and urbanization. Among the technologies available, adsorption has widely been used for the removal of various contaminants from aqueous media, and accordingly different adsorbents have already been prepared over the years. The choice of adsorbent for purification of a specific type of wastewater containing specific pollutants is mainly determined by the concentration and type of the pollutant(s) present in the wastewater, the efficiency/cost ratio of the adsorbents and the adsorption capacity of the adsorbent for the specific pollutant(s) of interest. In recent years, researchers have focused their efforts on the use of various low-cost biosorbents and also some synthesized polymer-based adsorbents for removal of heavy metal ions from wastewater. The purpose of this article is to provide comprehensive, up-to-date and critical information on the adsorption of different heavy metal pollutants by various types of biosorbents and polymer-based synthetic adsorbents. Further, the article describes the possible application of adsorption-based water remediation technology for wastewater-fed aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  Google Scholar 

  • Ajmal M, Rao RAK, Siddiqui BA (1996) Studies on removal and recovery of Cr (VI) from electroplating wastes. Water Res 30(6):1478–1482

    Article  CAS  Google Scholar 

  • Anirudhan TS, Ramachandran M (2008) Synthesis and characterization of amidoximated polyacrylonitrile/organobentonite composite for Cu (II), Zn (II), and Cd (II) adsorption from aqueous solutions and industry wastewaters. Ind Eng Che Res 47(16):6175–6184

    Article  CAS  Google Scholar 

  • Anirudhan TS, Suchithra PS (2010) Humic acid-immobilized polymer/bentonite composite as an adsorbent for the removal of copper (II) ions from aqueous solutions and electroplating industry wastewater. J Ind Eng Che 16(1):130–139

    Article  CAS  Google Scholar 

  • Annadurai G, Juang RS, Lee DJ (2002) Adsorption of heavy metals from water using banana and orange peels. Water Sci Tech 47(1):185–190

    Google Scholar 

  • Aspé E, Roeckel M, Fernández K (2012) Use of biomass for the removal of heavy metals at low concentrations from freshwater for Chilean Atlantic salmon farms. Aquac Eng 49:1–9

    Article  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification–a review. Chem Eng J 270:244–271

    Article  CAS  Google Scholar 

  • Borda MJ, Sparks DL (2008) Kinetics and mechanisms of sorption-desorption in soils: a multiscale assessment. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken, pp 97–124

    Google Scholar 

  • Bulut Y, Akçay G, Elma D, Serhatlı IE (2009) Synthesis of clay-based superabsorbent composite and its sorption capability. J Hazard Mater 171(1):717–723

    Article  CAS  Google Scholar 

  • Dai J, Yan H, Yang H, Cheng R (2010) Simple method for preparation of chitosan/poly (acrylic acid) blending hydrogel beads and adsorption of copper (II) from aqueous solutions. Chem Eng J 165(1):240–249

    Article  CAS  Google Scholar 

  • Denault J, Labrecque B (2004) Technology group on polymer nanocomposites–PNC-Tech. Industrial Materials Institute. National Research Council Canada, 75

    Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491

    Article  CAS  Google Scholar 

  • Dinu MV, Dragan ES (2010) Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms. Chem Eng J 160(1):157–163

    Article  CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interf Sci 271(2):321–328

    Article  CAS  Google Scholar 

  • Inglezakis VJ, Loizidou MD, Grigoropoulou HP (2003) Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J Colloid Interf Sci 261(1):49–54

    Article  CAS  Google Scholar 

  • Junior OK, Gurgel LVA, de Melo JCP et al (2006) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98:1291–1297

    Google Scholar 

  • Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56(2):141–147

    Article  CAS  Google Scholar 

  • Kioussis DR, Wheaton FW, Kofinas P (2000) Reactive nitrogen and phosphorus removal from aquaculture wastewater effluents using polymer hydrogels. Aqua Eng 23:315–332

    Article  Google Scholar 

  • Ku Y, Jung IL (2001) Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35(1):135–142

    Article  CAS  Google Scholar 

  • Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97(1):104–109

    Article  CAS  Google Scholar 

  • Kumar ASK, Kalidhasan S, Rajesh V, Rajesh N (2011) Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind Eng Chem Res 51(1):58–69

    Article  Google Scholar 

  • Liu P, Jiang L, Zhu L, Wang A (2014) Novel approach for attapulgite/poly (acrylic acid)(ATP/PAA) nanocomposite microgels as selective adsorbent for Pb (II) ion. React Funct Polym 74:72–80

    Article  CAS  Google Scholar 

  • Liu P, Jiang L, Zhu L et al (2015) Synthesis of covalently crosslinked attapulgite/poly (acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. J Ind Eng Chem 23:188–193

    Article  CAS  Google Scholar 

  • Marshall WE, Champagne ET (1995) Agricultural byproducts as adsorbents for metal ions in laboratory prepared solutions and in manufacturing wastewater. J Environ Sci Health Part A 30(2):241–261

    Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotech 170(6):1389–1416

    Article  CAS  Google Scholar 

  • Mirmohseni A, Dorraji MS, Figoli A, Tasselli F (2012) Chitosan hollow fibers as effective biosorbent toward dye: preparation and modeling. Bioresour Technol 121:212–220

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A et al (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  • Nethaji S, Sivasamy A, Mandal AB (2013) Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr (VI). Bioresour Technol 134:94–100

    Article  CAS  Google Scholar 

  • Nishikiori H, Shindoh J, Takahashi N et al (2009) Adsorption of benzene derivatives on allophane. Appl Clay Sci 43(2):160–163

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15(1):86–102

    Article  CAS  Google Scholar 

  • Quek SY, Wase DAJ, Forster CF (1998) The use of sago waste for the sorption of lead and copper. Water SA 24(3):251–256

    CAS  Google Scholar 

  • Rehman H, Shakirullah M, Ahmad I et al (2006) Sorption studies of nickel ions onto sawdust of Dalbergia Sissoo. J Chin Chem Soc 53(5):1045–1052

    Article  Google Scholar 

  • Rivas BL, Munoz C (2009) Synthesis and metal ion adsorption properties of poly (4-sodium styrene sulfonate-co-acrylic acid). J Appl Polym Sci 114(3):1587–1592

    Article  CAS  Google Scholar 

  • Roy D, Greenlaw PN, Shane BS (1993) Adsorption of heavy metals by green algae and ground rice hulls. J Environ Sci Health A 28(1):37–50

    Google Scholar 

  • Saber-Samandari S, Saber-Samandari S, Gazi M (2013) Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu (II) ions. React Funct Polym 73(11):1523–1530

    Article  CAS  Google Scholar 

  • Sarkar S, Datta SC, Biswas DR (2013) Using nanoclay polymer composite for efficient delivery of N and P to pearl millet grown in a smectite dominant soil in a greenhouse experiment. Clay Res 32(2):102–113

    Google Scholar 

  • Sarkar S, Datta SC, Biswas DR (2014) Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. J Appl Polym Sci 131. https://doi.org/10.1002/app.39951

  • Sarkar S, Datta SC, Biswas DR (2015) Effect of fertilizer loaded nanoclay/superabsorbent polymer composites on nitrogen and phosphorus release in soil. Proc Natl Acad Sci India B 85(2):415–421

    CAS  Google Scholar 

  • Shawky HA (2011) Improvement of water quality using alginate/montmorillonite composite beads. J Appl Polym Sci 119(4):2371–2378

    Article  CAS  Google Scholar 

  • Şölener M, Tunali S, Özcan AS et al (2008) Adsorption characteristics of lead (II) ions onto the clay/poly (methoxyethyl) acrylamide (PMEA) composite from aqueous solutions. Desalination 223(1):308–322

    Article  Google Scholar 

  • Tan WT, Ooi ST, Lee CK (1993) Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environ Technol 14(3):277–282

    Article  CAS  Google Scholar 

  • Tarley CRT, Ferreira SLC, Arruda MAZ (2004) Use of modified rice husks as a natural solid adsorbent of trace metals: characterisation and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchem J 77(2):163–175

    Article  Google Scholar 

  • Thayyath SA, Sreenivasan R, Abdul Rauf T (2010) Adsorptive removal of thorium (IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A Physicochem Eng Asp 368:13–22

    Article  Google Scholar 

  • Unuabonah EI, Olu-Owolabi BI, Adebowale KO, Yang LZ (2008a) Removal of lead and cadmium from aqueous solution by polyvinyl alcoholmodified kaolinite clay: a novel nanoclay adsorbent. Adsorpt Sci Technol 26(6):383–405

    Google Scholar 

  • Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ (2008b) Comparison of sorption of Pb and Cd on kaolinite clay and polyvinylalcohol-modified kaolinite clay. Adsorption 14(6):791–803

    Google Scholar 

  • Unuabonah EI, Olu-Owolabi BI, Okoro D, Adebowale KO (2009) Comparison of two-stage sorption design models for the removal of lead ions by polyvinylalcohol modified kaolinite clay. J Hazard Mater 171:215–221

    Article  CAS  Google Scholar 

  • Unuabonah EI, Olu-Owolabi BI, Fasuyi EI, Adebowale KO (2010) Modeling of fixedbed column studies for the adsorption of cadmium onto novel polymer–clay composite adsorbent. J Hazard Mater 179(1–3):415–423

    Article  CAS  Google Scholar 

  • Unuabonah EI, El-Khaiary MI, Olu-Owolabi BI, Adebowale KO (2012) Predicting the dynamics and performance of a polymer–clay based composite in a fixed bed system for the removal of lead (II) ion. Chem Eng Res Des 90:1105–1115

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC press, Boca Raton

    Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV Sorbex Inc, Montreal

    Google Scholar 

  • Wang X, Wang A (2010) Removal of Cd (II) from aqueous solution by a composite hydrogel based on attapulgite. Environ Technol 31(7):745–753

    Article  Google Scholar 

  • Wang X, Wang A (2012) Equilibrium isotherm and mechanism studies of Pb (II) and Cd (II) ions onto hydrogel composite based on vermiculite. Desalin Water Treat 48(1–3):38–49

    Article  CAS  Google Scholar 

  • Wang X, Zheng Y, Wang A (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly (acrylic acid)/attapulgite composites. J Hazard Mater 168(2):970–977

    Article  CAS  Google Scholar 

  • Wong KK, Lee CK, Low KS, Haron MJ (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50(1):23–28

    Article  CAS  Google Scholar 

  • Zhang J, Wang A (2010) Adsorption of Pb (II) from aqueous solution by chitosan-g-poly (acrylic acid)/attapulgite/sodium humate composite hydrogels. J Chem Eng Data 55(7):2379–2384

    Article  CAS  Google Scholar 

  • Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68(2):367–374

    Article  CAS  Google Scholar 

  • Zhang W, Ding Y, Boyd SA, Teppen BJ, Li H (2010) Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere 81(7):954–960. https://doi.org/10.1016/j.chemosphere.2010.07.053

    Article  CAS  Google Scholar 

  • Zhang S, Zhou Y, Nie W, Song L (2012) Preparation of Fe3O4/chitosan/poly (acrylic acid) composite particles and its application in adsorbing copper ion (II). Cellulose 19(6):2081–2091

    Article  CAS  Google Scholar 

  • Zheng Y, Hua S, Wang A (2010) Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly (acrylic acid)/sodium humate hydrogels. Desalination 263(1):170–175

    Article  CAS  Google Scholar 

  • Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185(2):1045–1052. https://doi.org/10.1016/j.jhazmat.2010.10.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S., Adhikari, S. (2018). Adsorption Technique for Removal of Heavy Metals from Water and Possible Application in Wastewater-Fed Aquaculture. In: Jana, B., Mandal, R., Jayasankar, P. (eds) Wastewater Management Through Aquaculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-7248-2_12

Download citation

Publish with us

Policies and ethics