Skip to main content

Stability of Local Information-Based Centrality Measurements Under Degree Preserving Randomizations

  • Conference paper
  • First Online:
Book cover Intelligent Computing and Information and Communication

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 673))

  • 1550 Accesses

Abstract

Node centrality is one of the integral measures in network analysis with wide range of applications from socioeconomic to personalized recommendation. We argue that an effective centrality measure should undertake stability even under information loss or noise introduced in the network. With six local information-based centrality metric, we investigate the effect of varying assortativity while keeping degree distribution unchanged, using networks with scale free and exponential degree distribution. This model provides a novel scope to analyze the stability of centrality metric which can further find many applications in social science, biology, information science, community detection and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. N.: The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences102(22), 7794–7799 (2005).

    Google Scholar 

  2. Jeong, H., Mason, S. P., Barabási, A. L., & Oltvai, Z. N.: Lethality and centrality in protein networks. Nature411(6833), 41–42 (2001).

    Google Scholar 

  3. Lamberti, F., Sanna, A., & Demartini, C.: A relation-based page rank algorithm for semantic web search engines. IEEE Transactions on Knowledge and Data Engineering21(1), 123–136 (2009).

    Google Scholar 

  4. Malliaros, F. D., Rossi, M. E. G., & Vazirgiannis, M.: Locating influential nodes in complex networks. Scientific reports6 (2016).

    Google Scholar 

  5. Strogatz, S. H.: Exploring complex networks. Nature410(6825), 268–276 (2001).

    Google Scholar 

  6. Borge-Holthoefer, J., Rivero, A., García, I., Cauhé, E., Ferrer, A., Ferrer, D., & Sanz, F.: Structural and dynamical patterns on online social networks: the spanish may 15th movement as a case study. PloS one6(8), e23883 (2011).

    Google Scholar 

  7. Barthelemy, M., Barrat, A., & Vespignani, A.: Dynamical processes on complex networks (2008).

    Google Scholar 

  8. Hirsch, J. E.: An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences of the United States of America, 16569–16572 (2005).

    Google Scholar 

  9. Joyce, K. E., Laurienti, P. J., Burdette, J. H., & Hayasaka, S.: A new measure of centrality for brain networks. PLoS One5(8), e12200 (2010).

    Google Scholar 

  10. Q. Zhang, M. Li, Y. Du, Y. Deng, “Local structure entropy of complex networks”, arXiv preprint arXiv:1412.3910. 2014 December.

  11. Zhang, Q., Li, M., Du, Y., & Deng, Y. Local structure entropy of complex networks. arXiv preprint arXiv:1412.3910 (2014).

  12. Xu, J., & Li, Y.: Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics22(22), 2800–2805(2006).

    Google Scholar 

  13. Li, M., Wang, J., Chen, X., Wang, H., & Pan, Y.: A local average connectivity-based method for identifying essential proteins from the network level. Computational Biology and Chemistry35(3), 143–150 (2011).

    Google Scholar 

  14. Lempel, R., & Moran, S.: Rank-stability and rank-similarity of link-based web ranking algorithms in authority-connected graphs. Information Retrieval8(2), 245–264 (2005).

    Google Scholar 

  15. de Kerchove, C., Ninove, L., & Van Dooren, P.: Maximizing PageRank via outlinks. Linear Algebra and its Applications429(5–6), 1254–1276 (2008).

    Google Scholar 

  16. Senanayake, U., Szot, P., Piraveenan, M., & Kasthurirathna, D.: The performance of page rank algorithm under degree preserving perturbations. In Foundations of Computational Intelligence (FOCI), 2014 IEEE Symposium on (pp. 24–29). IEEE (2014, December).

    Google Scholar 

  17. Ng, A. Y., Zheng, A. X., & Jordan, M. I.: Link analysis, eigenvectors and stability. In International Joint Conference on Artificial Intelligence (Vol. 17, No. 1, pp. 903–910). LAWRENCE ERLBAUM ASSOCIATES LTD (2001, August).

    Google Scholar 

  18. Ghoshal, G., & Barabási, A. L.: Ranking stability and super-stable nodes in complex networks. Nature Communications2, 394 (2011).

    Google Scholar 

  19. Sarkar, S., Kumar, S., Bhowmick, S., & Mukherjee, A.: Sensitivity and reliability in incomplete networks: Centrality metrics to community scoring functions. In Advances in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM International Conference on (pp. 69–72). IEEE (2016, August).

    Google Scholar 

  20. Gower, J. C.: Similarity, dissimilarity, and distance measure. Encyclopedia of Biostatistics (2005).

    Google Scholar 

  21. Yang, R.: Adjusting assortativity in complex networks. In Proceedings of the 2014 ACM Southeast Regional Conference (p. 2). ACM (2014, March).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandni Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, C., Doja, M.N., Ahmad, T. (2018). Stability of Local Information-Based Centrality Measurements Under Degree Preserving Randomizations. In: Bhalla, S., Bhateja, V., Chandavale, A., Hiwale, A., Satapathy, S. (eds) Intelligent Computing and Information and Communication. Advances in Intelligent Systems and Computing, vol 673. Springer, Singapore. https://doi.org/10.1007/978-981-10-7245-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7245-1_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7244-4

  • Online ISBN: 978-981-10-7245-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics