Skip to main content

Drops, Jets and High-Resolution 3D Printing: Fundamentals and Applications

  • Chapter
  • First Online:
Droplet and Spray Transport: Paradigms and Applications

Abstract

The ability to print high-resolution (<10 µm) three-dimensional (3D) features is important in numerous existing and emerging applications such as tissue engineering, nano-electronics, photovoltaics, optics, biomedical devices. The current chapter is focused on a subset of high-resolution printing techniques that exploit micro- and nano-fluidics features to attain high resolution. Here, these approaches are referred as fluidics assisted high-resolution 3D printing. Salient examples of such techniques are electrohydrodynamic printing, direct-write assembly, aerosol jet printing, etc. The chapter starts with a brief introduction and discussion on the challenges of high-resolution printing. This is followed by a section on fundamental mechanisms of droplet, jet and filament formations and their role in deciding the print resolution. Commonalities between different printing techniques (e.g. the physics of jet break-up and role of capillary stresses) are highlighted in order to provide a systematic understanding and context. Next, the fluid mechanics features determining the print resolution and quality are discussed in detail. This includes sections on the role of ink rheology, evaporation rate, nozzle size, substrate and nozzle wetting properties (i.e. surface energy) and dynamic effects such as drop impact and spreading, stability of printed liquid lines and liquid filaments. Wherever relevant, literature on much more established inkjet printing techniques is also exploited to provide a context for the high-resolution printing and clarify the distinct benefits and challenges that emerge at progressively higher resolutions. In the wetting and surface energy section, features of dip-pen lithography and transfer printing, two popular techniques for two-dimensional high-resolution printing, are also briefly introduced for completeness. Lastly, the chapter ends with a summary and brief perspective on future research trends in this area.

Richard Caulfield and Feihuang Fang contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed R, Jones T (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17(5):1052

    Article  Google Scholar 

  • Ahn BY et al (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593

    Article  Google Scholar 

  • Ahn BY et al (2010) Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. Chem Commun 46:7118–7120

    Article  Google Scholar 

  • Bhattacharjee T et al (2015) Writing in the granular gel medium. Science Advances. vol. 1, p e1500655–e1500655

    Article  Google Scholar 

  • Basaran OA (2002) Small-scale free surface flows with breakup: Drop formation and emerging applications. AIChE J 48:1842–1848

    Article  Google Scholar 

  • Batchelor GK (2000) An introduction to fluid dynamics, Cambridge University Press

    Google Scholar 

  • Berry SM et al (2011) Characterization and modeling of direct-write fabrication of microscale polymer fibers. Polymer 52(7):1654–1661

    Article  Google Scholar 

  • Bostwick J, Steen P (2015) Stability of constrained capillary surfaces. Annu Rev Fluid Mech 47:539–568

    Article  MathSciNet  Google Scholar 

  • Carlson A et al (2012) Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater 24(39):5284–5318

    Article  Google Scholar 

  • Chawla KK, Meyers M (1999) Mechanical behavior of materials, Prentice Hall

    Google Scholar 

  • Collins RT et al (2008) Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys 4:149–154

    Article  Google Scholar 

  • Coppola S et al (2014) Tethered pyro-electrohydrodynamic spinning for patterning well-ordered structures at micro-and nanoscale. Chem Mater 26(11):3357–3360

    Article  Google Scholar 

  • De Gennes P-G, Brochard-Wyart F, Quéré D (2013) Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer Science & Business Media

    Google Scholar 

  • Deegan RD et al (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827

    Article  Google Scholar 

  • Derby B (2010) Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414

    Article  Google Scholar 

  • Dong Z, Ma J, Jiang L (2013) Manipulating and dispensing micro/nanoliter droplets by superhydrophobic needle nozzles. ACS Nano 7:10371–10379

    Article  Google Scholar 

  • Duoss EB et al (2014) Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv Func Mater 24(31):4905–4913

    Article  Google Scholar 

  • Einstein A (1956) Investigations on the theory of the Brownian movement, Courier Corporation

    Google Scholar 

  • Fang F et al (2017) High-resolution 3D printing for healthcare underpinned by small-scale fluidics, Woodhead Publishing

    Chapter  Google Scholar 

  • Ferraro P et al (2010) Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat Nanotechnol 5(6):429–435

    Article  Google Scholar 

  • Galliker P et al (2012) Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nat Commun 3:890

    Article  Google Scholar 

  • Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim et Biophys Acta (BBA) General Subjects. 1840(8):2506–2519

    Article  Google Scholar 

  • Gladman AS et al (2016) Biomimetic 4D printing. Nat Mater 15(4):413–418

    Article  Google Scholar 

  • Gratson GM, Xu M, Lewis JA (2004) Microperiodic structures: direct writing of three-dimensional webs. Nature. 428(6981):386–386

    Article  Google Scholar 

  • Gui L, Niklason LE (2014) Vascular tissue engineering: building perfusable vasculature for implantation. Curr Opin Chem Eng 3:68–74

    Article  Google Scholar 

  • Hinton TJ et al (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Advanc 1(9):e1500758

    Article  Google Scholar 

  • Hirt L et al (2016) Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition. Adv Mater 28(12):2311–2315

    Article  Google Scholar 

  • Hirt L et al (2017) Additive manufacturing of metal structures at the micrometer scale. Adv Mater 29:1604211

    Article  Google Scholar 

  • Hong S et al (2006) Dip-pen nanolithography, in scanning probe microscopies beyond imaging. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, FRG. pp 141–174

    Chapter  Google Scholar 

  • Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090–7094

    Article  Google Scholar 

  • Hu J, Yu M-F (2010) Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329(5989):313–316

    Article  Google Scholar 

  • Huo F et al (2008) Polymer pen lithography. Science 321(5896):1658–1660

    Article  Google Scholar 

  • In’t Veld BH et al (2015) Micro additive manufacturing using ultra short laser pulses. CIRP Ann Manuf Technol 64(2):701–724

    Article  Google Scholar 

  • Israelachvili JN (2011) Adhesion and wetting phenomena. In: Intermolecular and surface forces. Academic Press, San Diego. pp 415–468

    Google Scholar 

  • Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19:353–364

    Article  Google Scholar 

  • Jaworek A, Krupa A (1999) Classification of the modes of EHD spraying. J Aerosol Sci 30:873–893

    Article  Google Scholar 

  • Jeong JW et al (2012) Nanotransfer printing with sub-10 nm resolution realized using directed self-assembly. Adv Mater 24(26):3526–3531

    Article  Google Scholar 

  • Jeong JW et al (2014) High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat Commun 5:5387

    Article  Google Scholar 

  • Kim T-H et al (2011) Full-colour quantum dot displays fabricated by transfer printing. Nat Photon 5:176–182

    Article  Google Scholar 

  • Kirby BJ (2010) Micro-and nanoscale fluid mechanics: transport in microfluidic devices, Cambridge University Press

    Google Scholar 

  • Kumar S (2015) Liquid transfer in printing processes: liquid bridges with moving contact lines. Annu Rev Fluid Mech 47:67–94

    Article  MathSciNet  Google Scholar 

  • Kuznetsov AI et al (2011) Laser fabrication of large-scale nanoparticle arrays for sensing applications. ACS Nano 5(6):4843–4849

    Article  Google Scholar 

  • Lebel LL et al (2010) Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv Mater 22(5):592–596

    Article  Google Scholar 

  • Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83(10):2341–2359

    Article  Google Scholar 

  • Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Func Mater 16:2193–2204

    Article  Google Scholar 

  • Li D (2008) Ohnesorge number. In: Encyclopedia of microfluidics and nanofluidics. Springer US, Boston, MA. pp 1513–1513

    Google Scholar 

  • McHale G et al (1998) Evaporation and the wetting of a low-energy solid surface. J Phys Chem B 102(11):1964–1967

    Article  Google Scholar 

  • Meitl MA et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5(1):33

    Article  Google Scholar 

  • Meyer E (1992) Atomic force microscopy. Prog Surf Sci 41:3–49

    Article  Google Scholar 

  • Michel B et al (2002) Printing meets lithography: soft approaches to high-resolution patterning. CHIMIA Int J Chem 56:527–542

    Article  Google Scholar 

  • Miller JS et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774

    Article  Google Scholar 

  • Momotenko D et al (2016) Write-read 3D patterning with a dual-channel nanopipette. ACS Nano 10(9):8871–8878

    Article  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  Google Scholar 

  • Muth JT et al (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26:6307–6312

    Article  Google Scholar 

  • Onses MS et al (2015) Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11:4237–4266

    Article  Google Scholar 

  • Ou K-L, Hosseinkhani H (2014) Development of 3D in vitro technology for medical applications. Int J Mol Sci 15(10):17938–17962

    Article  Google Scholar 

  • Park J-U et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6:782–789

    Article  Google Scholar 

  • Piner RD et al (1999) Dip-pen nanolithography. Science 283(5402):661–663

    Article  Google Scholar 

  • Piqué A et al (2016) Laser 3D micro-manufacturing. J Phys D Appl Phys 49(22)

    Article  Google Scholar 

  • Popov YO (2005) Evaporative deposition patterns: Spatial dimensions of the deposit. Phys Rev E Statistic Nonlin Soft Mat Phys 71

    Google Scholar 

  • Richner P et al (2016a) Full-spectrum flexible color printing at the diffraction limit. ACS Photonics 3:754–757

    Article  Google Scholar 

  • Richner P et al (2016b) Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution. ACS Appl Mater Interfaces 8:11690–11697

    Article  Google Scholar 

  • Rogers JA, Paik U (2010) Nanofabrication: Nanoscale printing simplified. Nat Nanotechnol 5(6):385–386

    Article  Google Scholar 

  • Rozhok S, Piner R, Mirkin CA (2003) Dip-pen nanolithography: what controls ink transport? J Phys Chemistry B 107:751–757

    Article  Google Scholar 

  • Ru C et al (2014) A review of non-contact micro- and nano-printing technologies. J Micromech Microeng 24:053001

    Article  Google Scholar 

  • Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nanotechnol 2:145–155

    Article  Google Scholar 

  • Schatz GC (2007) Using theory and computation to model nanoscale properties. In: Proceedings of the National Academy of Sciences of the United States of America, pp 6885–6892

    Article  Google Scholar 

  • Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers Transport and solidification phenomena in molten microdroplet pileup Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9:3172–3187

    Article  Google Scholar 

  • Schirmer NC et al (2010a) On Ejecting colloids against capillarity from sub-micrometer openings: on-demand dielectrophoretic nanoprinting. Adv Mater 22(42):4701–4705

    Article  Google Scholar 

  • Schirmer NC et al (2010b) Millimeter-wave on-chip solenoid inductor by on-demand three-dimensional printing of colloidal nanoparticles. Appl Phys Lett 97(24):243109

    Article  Google Scholar 

  • Schirmer NC et al (2011) On the principles of printing sub-micrometer 3D structures from dielectric-liquid-based colloids. Adv Func Mater 21(2):388–395

    Article  MathSciNet  Google Scholar 

  • Schneider J et al (2013) A novel 3D integrated platform for the high-resolution study of cell migration plasticity. Macromol Biosci 13(8):973–983

    Article  Google Scholar 

  • Schneider J et al (2015) Site-specific deposition of single gold nanoparticles by individual growth in electrohydrodynamically-printed attoliter droplet reactors. Nanoscale 7(21):9510–9519

    Article  Google Scholar 

  • Schneider J et al (2016) Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Adv Func Mater 26:833–840

    Article  Google Scholar 

  • Sheehan PE, Whitman LJ (2002) Thiol diffusion and the role of humidity in Dip Pen nanolithography. Phys Rev Lett 88:156104

    Article  Google Scholar 

  • Shen X, Ho CM, Wong TS (2010) Minimal size of coffee ring structure. J Phys Chem B 114:5269–5274

    Article  Google Scholar 

  • Skylar-Scott MA, Gunasekaran S, Lewis JA (2016) Laser-assisted direct ink writing of planar and 3D metal architectures. Proc Nat Acad Sci 113(22):6137–6142

    Article  Google Scholar 

  • Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18(14):5429–5437

    Article  Google Scholar 

  • Stifter T, Marti O, Bhushan B (2000) Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys Rev B 62:13667–13673

    Article  Google Scholar 

  • Stow C, Hadfield M (1981) An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. The Royal Society

    Article  Google Scholar 

  • Tiwari MK et al (2010) Highly liquid-repellent, large-area, nanostructured poly (vinylidene fluoride)/poly (ethyl 2-cyanoacrylate) composite coatings: particle filler effects. ACS Appl Mater Interfaces 2(4):1114–1119

    Article  Google Scholar 

  • Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754

    Article  Google Scholar 

  • Weeks BL et al (2002) Effect of dissolution kinetics on feature size in dip-pen nanolithography. Phys Rev Lett 88:255505

    Article  Google Scholar 

  • Yunker PJ et al (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360):308–311

    Article  Google Scholar 

  • Zaumseil J et al (2003) Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett 3(9):1223–1227

    Article  Google Scholar 

  • Zhang Y et al (2017) Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mat 2:17019

    Article  Google Scholar 

  • Zhu C, Smay JE (2012) Catenary shape evolution of spanning structures in direct-write assembly of colloidal gels. J Mater Process Technol 212(3):727–733

    Article  Google Scholar 

  • Zywietz U et al (2014) Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat Commun 5:3402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caulfield, R., Fang, F., Tiwari, M.K. (2018). Drops, Jets and High-Resolution 3D Printing: Fundamentals and Applications. In: Basu, S., Agarwal, A., Mukhopadhyay, A., Patel, C. (eds) Droplet and Spray Transport: Paradigms and Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7233-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7233-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7232-1

  • Online ISBN: 978-981-10-7233-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics