Skip to main content

Sprays Used for Thermal Barrier Coatings

  • Chapter
  • First Online:
Droplet and Spray Transport: Paradigms and Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

“Nano-sized” or “nano-structured” materials correspond to particle diameters or an internal structure with at least one dimension smaller than 100 nm. The thermal spray community has been actively involved in this area for more than 30 years. Due to the large volume fraction of the internal interfaces, nano-structured coatings exhibit better properties, especially toughness, thanks to crack arresting effect. However, nano-sized particles can be injected in plasma jets only with a liquid carrier as either suspensions (Suspension Plasma Spray, SPS) of nanometer-sized particles or solutions (Solution Plasma Spray Process, SPPS) of reacting elements forming particles. However, a few problems must be solved:

  • How droplets and sub-micrometer particles behave in spray jets and what are the measuring tools available?

  • Is it possible to follow the formation of splats with particles below a few micrometers?

  • How optimizing the liquid injection and its matching with the spray torch?

  • What is the interest to spray coatings with mixtures of micrometer and nanometer-sized particles?

Among the different coatings studied many works have been related to thermal barrier coatings (TBCs) to compete, at lower price, with Electron Beam-Physical Vapor Deposition (EB-PVD) or Plasma Spray-Physical Vapor Deposition (PS-PVD) and also to achieve TBCs with a better resistance to Ca50Mg10Al10Si30 (CMAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APG :

Advanced Plasma Gun

APS :

Atmospheric Plasma Spraying

CMAS :

Ca50Mg10Al10Si30

DC :

Direct Current

DCLC :

Double Ceramic Layer Coatings

EB-PVD :

Electron Beam-Physical Vapor Deposition

GLR :

Gas-to-Liquid Mass Ratio

GZO :

Gadolinium Zirconate

HVOF :

High Velocity Oxy-Fuel

IPBs :

Inter-Pass Boundaries

LAMT :

La(Al1/4Mg1/2Ta1/4)O3

LSCF :

La1−xSrxCo1−yFeyO3−δ

LZ :

Lanthanum Zirconate (La2Zr2O7)

OFGC :

Optimized Functionally Graded Coating

PIV :

Particle Image Velocimetry

PS-PVD :

Plasma Sprayed-Physical Vapor Deposition

SCLC :

Single Ceramic Layer Coatings

SPS :

Suspension Plasma Spraying

SPPS :

Solution Precursor Plasma Spraying

St :

Stokes Number

TBCs :

Thermal Barrier Coatings

TEC :

Thermal Expansion Coefficient

TGO :

Thermally Grown Oxide

USAXS :

Ultra-Small-Angle X-rays Scattering

We :

Weber Number

YAG :

Y3Al5O12

YSZ :

Yttria Stabilized Zirconia

Z :

Ohnesorge Number

References

  • Aziz B, Gougeon P, Moreau C (2017) Temperature measurement challenges and limitations for in-flight particles in suspension plasma spraying. J Therm Spray Technol 26:695–707

    Article  Google Scholar 

  • Bacciochini A, Ilavsky J, Montavon G, Denoirjean A, Ben-Ettouil F, Valette S, Fauchais P, Wittmann-Teneze K (2010) Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultra-small-angle X-ray scattering (USAXS). Mater Sci Eng A 528:91–102

    Article  Google Scholar 

  • Bakan E, Mack DE, Mauer G, Vassen R (2014) Gadolinium zirconate/ysz thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc 97(12):4045–4051

    Article  Google Scholar 

  • Basu S, Jordan EH, Cetegen BM (2006) Fluid mechanics and heat transfer of liquid precursor droplets injected into high temperature plasmas. J Therm Spray Technol 15(4):576–581

    Article  Google Scholar 

  • Ben-Ettouil F, Denoirjean A, Grimaud A, Montavon G, Fauchais P (2009) Sub-micrometer-sized y-psz thermal barrier coatings manufactured by suspension plasma spraying: process, structure and some functional properties. In: Marple BR et al (eds) Thermal spray 2009. ASM International, Materials Park, Ohio, USA, pp 193–199

    Google Scholar 

  • Bertolissi G, Chazelas C, Bolelli G, Lusvarghi L, Vardelle M, Vardelle A (2012) Engineering the microstructure of solution precursor plasma-sprayed coatings. J Therm Spray Technol 21(6):1148–1162

    Article  Google Scholar 

  • Blazdell P, Kuroda S (2000) Plasma spraying of submicron ceramic suspensions using a continuous ink jet printer. Surf Coat Technol 123(2–3):239–246

    Article  Google Scholar 

  • Burgess A (2002) Hastelloy C-276 parameter study using the axial III plasma spray system. In: Lugsheider E (ed) Proceedings ITSC, Essen, Germany (Pub). ASM International, Materials Park, OH, USA pp 516–518

    Google Scholar 

  • Chen X, Pfender E (1983) Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma Process 3(1):97–113

    Article  Google Scholar 

  • Chen D, Jordan EH, Gell M (2008) Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surf Coat Tech 202:2132–2138

    Article  Google Scholar 

  • Cotler EM, Chen D, Molz RJ (2011) Pressure-based liquid feed system for suspension plasma spray coatings. J Therm Spray Technol 20(4):967–973

    Article  Google Scholar 

  • Craig M, Ndamka NL, Wellman RG, Nicholls JR (2015) CMAS degradation of EB-PVD TBCs: the effect of basicity. Surf Coat Technol 270:45–153

    Article  Google Scholar 

  • Delbos C (2004) Understanding contribution to the liquid injection of ceramics (Y.S.Z., Perovskyte, …) or metals (Ni, …) in a direct current plasma jet in order to work out finely structured coatings for S.O.F.Cs. (in French). PhD thesis. Univ of Limoges, France 30 Nov 2004. Published on line 22 July 2005

    Google Scholar 

  • Delbos C, Fazilleau J, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma spraying, part 2: zirconia particle treatment and coating formation. Plasma Chem Plasma Process 26(4):393–414

    Article  Google Scholar 

  • Duarte W, Rossignol S, Vardelle M (2014) La2Zr2O7 (LZ) coatings by liquid feedstock plasma spraying: the role of precursors. J Thermal Spray Technol 23(8):1425–1435

    Article  Google Scholar 

  • Etchart-Salas R (2007) Suspension plasma spraying: analytical and experimental approach of the phenomena imply in the reproducibility and the quality of the deposits. PhD’s thesis. University of Limoges 17 Oct 2007. On line published Feb 2009

    Google Scholar 

  • Etchart-Salas R, Rat V, Coudert JF, Fauchais P, Caron N, Wittman K, Alexandre S (2007) Influence of plasma instabilities in ceramic suspension plasma spraying. J Therm Spray Technol 16(5–6):857–865

    Article  Google Scholar 

  • Fauchais P (2004) Understanding plasma spraying (Topical review). J Phys D: Appl Phys 37:R86–R108

    Article  Google Scholar 

  • Fauchais P, Rat V, Delbos C, Coudert JF, Chartier T, Bianchi L (2005) Understanding of suspension DC plasma spraying of finely structured coating for SOFC. IEEE Trans Plasm Sci 33:920–930

    Article  Google Scholar 

  • Fauchais P, Etchart-Salas R, Delbos C, Tognovi M, Rat V, Coudert JF, Chartier T (2007) Suspension and solution plasma spraying of finely structured coatings. J Phys D Appl Phys 40:2394–2406

    Article  Google Scholar 

  • Fauchais P, Etchart-Salas R, Rat V, Coudert J-F, Car N, Wittmann-Ténèze K (2008) Parameters controlling liquid plasma spraying: solutions, sols or suspensions. J Therm Spray Technol 17(1):31–59

    Article  Google Scholar 

  • Fauchais P, Montavon G (2010) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19:226–239

    Article  Google Scholar 

  • Fauchais P, Vardelle M (2010) Sensors in spray processes. J Therm Spray Technol 19(4):668–694

    Article  Google Scholar 

  • Fauchais P, Montavon G, Lima RS, Marple BR (2011a) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D 44:093001

    Article  Google Scholar 

  • Fauchais P, Vardelle A (2011b) Innovative and emerging processes in plasma spraying: from micro- to nanostructured coatings. J Phys D Appl Phys 44:194011

    Article  Google Scholar 

  • Fauchais P, Vardelle A (2012) Solution and suspension plasma spraying of nanostructure coatings. In: Jazi H (ed) Advanced plasma spray applications. ISBN:978-953-51-0349-3, InTech. http://www.intechopen.com/books/advanced-plasma-spray-applications/ solution-and-suspension-plasmaspraying-of-nanostructure-coatings

    Google Scholar 

  • Fauchais P, Joulia A, Goutier S, Chazelas C, Vardelle M, Vardelle A, Rossignol S (2013) Suspension and solution plasma spraying. J Phys D Appl Phys 46:224015

    Article  Google Scholar 

  • Fauchais P, Heberlein J, Boulos M (2014) Thermal spray fundamentals. Springer, New York, 1566 pages, Chapter 14

    Book  Google Scholar 

  • Fauchais P, Vardelle M, Vardelle A, Goutier S (2015a) What do we know, what are the current limitations of suspension plasma spraying? J Therm Spray Technol 24(7):1120–1129

    Article  Google Scholar 

  • Fauchais P, Vardelle M, Goutier S, Vardelle A (2015b) Specific measurements of in-flight droplet and particle behavior and coating microstructure in suspension and solution plasma spraying. J Therm Spray Technol 24(8):1498–1505

    Article  Google Scholar 

  • Fauchais P, Vardelle M, Goutier S, Vardelle A (2015c) Key challenges and opportunities in suspension and solution plasma spraying. Plasm Chem Plasm Process 35:511–525

    Article  Google Scholar 

  • Fauchais P, Vardelle M, Goutier S (2016) Latest researches advances of plasma spraying: from splat to coating formation. J Therm Spray Technol 25(8):1534–1553

    Article  Google Scholar 

  • Fazilleau J (2003) Contribution to the understanding of the phenomena implied in the achievement of finely structured oxide coatings by suspension plasma spraying. PhD thesis. French, University of Limoges, France

    Google Scholar 

  • Fazilleau J, Delbos C, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) phenomena involved in suspension plasma spraying, part 1: suspension injection and behavior. Plasm Chem Plasm Process 26(4):371–391

    Article  Google Scholar 

  • Filkova I, Cedik P (1984) Nozzle atomization in spray drying. In: Mujumdar AS (ed) Advances drying, vol 3. Hemisphere Pub Corp, pp 181–215

    Google Scholar 

  • Gell M, Xie LD, Ma XC, Jordan EH, Padture NP (2004) Highly durable thermal barrier coatings made by the solution precursor plasma spray process. Surf Coat Technol 13(1):97–102

    Article  Google Scholar 

  • Gell M, Jordan EH, Teicholz M, Cetegen BM, Padture N, Xie L, Chen D, Ma X, Roth J (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135

    Article  Google Scholar 

  • Guignard A, Mauer G, Vaßen R, Stöver D (2012) Deposition and characteristics of sub-micrometer structured thermal barrier coatings by suspension plasma spraying. J Therm Spray Technol 21(3–4):416–424

    Article  Google Scholar 

  • He W, Mauer G, Gindrat M, Wäger R, Vaßen R (2017) Investigations on the nature of ceramic deposits in plasma spray-physical vapor deposition. J Therm Spray Technol 26:83–92

    Article  Google Scholar 

  • Jadhav AD, Padture NP, Jordan EH, Gell M, Miranzo P, Fullu ER (2006) Low thermal conductivity plasma sprayed thermal barrier coatings with engineered microstructure. Acta Mater 54(12):3343–3349

    Article  Google Scholar 

  • Jiang C, Jordan EH, Harris AB, Gell M, Roth J (2015) Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process. J Therm Spray Technol 24(6):895–906

    Article  Google Scholar 

  • Jordan EH, Xie LD, Ma XC, Gell M, Padture NP, Cetegem B, Roth J, Xiao TD, Bryant PEL, Roth J, Xiao TD, Bryant PEC (2004) Superior thermal barrier coatings using solution precursor plasma spray. J Therm Spray Technol 13(1):57–65

    Article  Google Scholar 

  • Jordan EH, Gell M, Bonzani P, Chen D, Basu S, Cetegen B, Wu F, Ma X (2007) Making dense coatings with the solution precursor plasma spray process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solution. ASM International, Materials Park, OH, USA, pp 463–470 (e-proceedings)

    Google Scholar 

  • Jordan EH, Jiang C, Roth J, Gell M (2014) Low thermal conductivity yttria-stabilized zirconia thermal barrier coatings using the solution precursor plasma spray process. J Therm Spray Technol 23(5):849–859

    Article  Google Scholar 

  • Jordan EH, Jiang C, Gell M (2015) The solution precursor plasma spray (SPPS) process: a review with energy considerations. J Therm Spray Technol 24(7):1153–1165

    Article  Google Scholar 

  • Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Surf Coat Technol 238(2):275–286

    Google Scholar 

  • Kassner H, Siegert R, Hathiramani D, Vassen R, Stoever D (2008) Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings. J Therm Spray Technol 17(1):115–123

    Article  Google Scholar 

  • Keshri AK, Agarwal A (2012) Plasma processing of nanomaterials for functional applications—a review. Nanosci Nanotechnol Lett 4:228–250

    Article  Google Scholar 

  • Killinger A, Gadow R, Mauer G, Guignard A, Vaßen R, Stöver D (2011) Review of new developments in suspension and solution precursor thermal spray processes. J Therm Spray Technol 20(4):677–695

    Article  Google Scholar 

  • Klemens PG, Gell M (1998) Thermal conductivity of thermal barrier coatings. Materials Sci Eng A 245:143–149

    Article  Google Scholar 

  • Koch D, Mauer G, Vaßen R (2017) Manufacturing of composite coatings by atmospheric plasma spraying using different feed-stock materials as YSZ and MoSi2. J Therm Spray Technol 26:708–716

    Article  Google Scholar 

  • Li D, Feng J, Zhao H, Liu C, Zhang L, Shao F, Zhao Y, Tao S (2017a) Microstructure formed by suspension plasma spraying: from YSZ splat to coating. Ceram Int (in press) 43(10):7488–7496

    Article  Google Scholar 

  • Li X, Ma W, Wen J, Bai Y, Sun L, Chen B, Dong H, Shuang Y (2017b) Preparation of SrZrO3 thermal barrier coating by solution precursor plasma spray. J Therm Spray Technol 26:371–377

    Article  Google Scholar 

  • Mahade S, Curry N, Björklund S, Markocsan N, Nylen P, Vaßen R (2017) Erosion performance of gadolinium zirconate-based thermal barrier coatings processed by suspension plasma spray. J Therm Spray Technol 26:108–115

    Article  Google Scholar 

  • Marchand O, Girardot L, Planche MP, Bertrand P, Bailly Y, Bertrand G (2011) An insight into suspension plasma spray: injection of the suspension and its interaction with the plasma flow. J Therm Spray Technol 20(6):1310–1320

    Article  Google Scholar 

  • Marchand C, Vardelle A, Mariaux G, Lefort P (2008) Modeling of the plasma spray process with liquid feedstock injection. Surf Coat Technol 202:4458–4464

    Article  Google Scholar 

  • Marqués J-L, Forster G, Schein J (2009) Multi-electrode plasma torches: motivation for development and current state-of-the-art. Open Plasm Phys J 2:89–98

    Article  Google Scholar 

  • Mauer G, Sebold D, Vaßen R, Stöver D (2012) Improving atmospheric plasma spraying of zirconate thermal barrier coatings based on particle diagnostics. J Therm Spray Technol 21(3–4):363–3716

    Article  Google Scholar 

  • Mauer G, Jarligo MO, Mack DE, Vaßen R (2013) Plasma-sprayed thermal barrier coatings: new materials, Processing Issues, and Solutions. J Therm Spray Technol 22(5):646–658

    Article  Google Scholar 

  • Mauer G, Sebold D, Vaßen R (2014) MCrAlY bond-coats by high-velocity atmospheric plasma spraying. J Therm Spray Technol 23(1–2):140–146

    Article  Google Scholar 

  • Mauer G, Schlegel N, Guignard A, Vaßen R, Guillon O (2015) Effects of feedstock decomposition and evaporation on the composition of suspension plasma-sprayed coatings. J Therm Spray Technol 24(7):1187–1194

    Article  Google Scholar 

  • Mechnich P, Braue W, Schulz U (2013) High-temperature corrosion of EB-PVD yttria partially stabilized zirconia thermal barrier coatings with an artificial volcanic ash overlay. Am Ceram Soc 96(6):1958–1965

    Article  Google Scholar 

  • Miller RA (1987) Current status of thermal barrier coatings-an overview. Surf Coat Technol 30:1–11

    Article  Google Scholar 

  • Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42

    Article  Google Scholar 

  • Moreau C, Gougeon P, Burgess A, Ross D (1995) Characterization of particle flows in an axial injection plasma torch. In: Berndt C, Sampath S (eds) Proceedings 8th NTSC, Houston, Texas (Pub). ASM International, Materials Park, OH, USA, pp 141–147

    Google Scholar 

  • Munawar AU, Schulz U, Cerri G, Lau H (2014) Microstructure and cyclic lifetime of Gd and Dy-containing EB-PVD TBCs deposited as single and double-layer on various bond coats. Surf Coat Technol 245:92–102

    Article  Google Scholar 

  • Munawar AU, Schulz U, Shahid M (2016) Microstructure and lifetime of EB-PVD TBCs with Hf-doped bond coat and Gd-zirconate ceramic top coat on CMSX-4 substrates. Surf Coat Technol 299:104–112

    Article  Google Scholar 

  • Muoto CK, Jordan EH, Gell M, Aindow M (2011) Identification of desirable precursor properties for solution precursor plasma spray. J Therm Spray Technol 20(4):802–816

    Article  Google Scholar 

  • Mušálek R, Bertolissi G, Medřický J, Kotlan J, Pala Z, Curry N (2015) Feasibility of suspension spraying of yttria-stabilized zirconia withwater-stabilized plasma torch. Surf Coat Technol 268:58–62

    Article  Google Scholar 

  • Klemens PG, Gell M (1998) Thermal conductivity of thermal barrier coatings. Mat Sci Eng A 245:143–149

    Article  Google Scholar 

  • von Niessen K, Gindrat M (2014) Plasma sprayed-PVD: a new thermal spray process to deposit out of the vapor phase. J Therm Spray Technol 120(4):736–743

    Google Scholar 

  • Oberste-Berghaus J, Legoux J-G, Moreau C (2005a) Injection conditions and in-flight particle states in suspension plasma spraying of alumina and zirconia nano-ceramics, ITSC 2005. Düsseldorf, Germany, DVS (e-proceedings)

    Google Scholar 

  • Oberste-Berghaus J, Boccaricha S, Legoux JG, Moreau C, Chraska T (2005b) Suspension plasma spraying of nanoceramics using an axial injection torch, ITSC 2005. Dusselörf, Germany, DVS (e-proceedings)

    Google Scholar 

  • Oberste-Berghaus J, Marple B, Moreau C (2006) Suspension plasma spraying of nanostructured WC-12Co coatings. J Therm Spray Technol 15(4):676–681

    Article  Google Scholar 

  • Potthoff A, Toma F-L (2014) Suspensions, ready for thermal spraying? In: Meillot E (ed) 6th international workshop on suspension and solution thermal spraying. Tours France, 8, 9 Oct

    Google Scholar 

  • Rampon R, Filiatre C, Bertrand G (2008) Suspension plasma spraying of YPSZ coatings: suspension atomization and injection. J Therm Spray Technol 17(1):105–114

    Article  Google Scholar 

  • Ravi BG, Sampath S, Gambino R, Devi PS, Parise JB (2006) Plasma spray synthesis from precursors: progress, issues and considerations. J Therm Spray Technol 15(4):701–707

    Article  Google Scholar 

  • Schlegel N, Sebold D, Sohn YJ, Mauer G, Vaßen R (2015) Cycling performance of a columnar-structured complex perovskite in a temperature gradient test. J Therm Spray Technol 24(7):1205–1212

    Article  Google Scholar 

  • Soysal D, Ansar A (2013) A new approach to understand liquid injection into atmospheric plasma jets. Surf Coat Technol 220:187–190

    Article  Google Scholar 

  • Toma F-L, Berger L-M, Stahr CC, Naumann T, Langner S (2010) Microstructures and functional properties of suspension-sprayed Al2O3 and TiO2 coatings: an overview, surface and coatings technology. Surf Coat Technol 202:4318–4328

    Google Scholar 

  • Toma FL, Bertrand G, Rampon R, Klein D, Coddet C (2006) Relationship between the suspension properties and liquid plasma sprayed coating characteristics, ITSC 2006. ASM International, Materials Park, OH, USA (e-proceedings)

    Google Scholar 

  • VanEvery K, Krane MJM, Trice RW, Wang H, Porter W, Besser M, Sordelet D, Ilavsky J, Almer J (2011) Column formation in suspension plasma-sprayed coatings and resultant thermal properties. J Therm Spray Technol 20(4):817–828

    Article  Google Scholar 

  • Vaßen R, Kaßner H, Mauer G, Stöver D (2010) Suspension plasma spraying: process characteristics and applications. J Therm Spray Technol 19(1–2):219–225

    Article  Google Scholar 

  • Vasiliev AL, Padture NP, Ma X (2006a) Coatings of metastable ceramics deposited by solution precursor plasma spray: I-Binary ZrO2-Al2O3 system. Acta Mater 54(19):4913–4920

    Article  Google Scholar 

  • Vasiliev AL, Padture NP, Ma XC (2006b) Coatings of metastable ceramics deposited by solution-precursor plasma spray: II. Ternary ZrO2–Y2O3–Al2O3 system. Acta Mat 54(19):4921–4936

    Article  Google Scholar 

  • Vidal-Setif MH, Chellah N, Rio C, Sanchez C, Lavigne O (2012) Calcium–magnesium–alumino–silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high-pressure blade TBCs. Surf Coat Technol 208:39–45

    Article  Google Scholar 

  • Wang AH King, Herman H (1998) Nanomaterial deposits formed by dc plasma spraying of liquid feedstocks. J Am Ceram Soc 81(1):121–128

    Google Scholar 

  • Wang C, Wang Y, Wang L, Hao G, Sun X, Shan F, Zou Z (2014) Nanocomposite lanthanum zirconate thermal barrier coating deposited by suspension plasma spray process. J Therm Spray Technol 23(7):1030–1036

    Article  Google Scholar 

  • Wang C, Wang Y, Fan S, You Y, Wang L, Yang C, Sun X, Li X (2015) Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying. J Alloy Compd 649:1182–1190

    Article  Google Scholar 

  • Wittmann K, Fazilleau J, Coudert J-F, Fauchais P, Blein F (2002) A new process to deposit thin coatings by injecting nanoparticles suspensions in a d.c. plasma jet. In: Lugscheider E (ed) Proceedings of ITSC 2002, DVS (Pub). Düsseldorf, Germany, pp 519–522

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fauchais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fauchais, P., Vardelle, M., Vardelle, A., Goutier, S. (2018). Sprays Used for Thermal Barrier Coatings. In: Basu, S., Agarwal, A., Mukhopadhyay, A., Patel, C. (eds) Droplet and Spray Transport: Paradigms and Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7233-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7233-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7232-1

  • Online ISBN: 978-981-10-7233-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics