Skip to main content

Animal Models of Human Gammaherpesvirus Infections

  • Chapter
  • First Online:
Human Herpesviruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1045))

Abstract

Humans are the only natural host of both Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), and this strict host tropism has hampered the development of animal models of these human gammaherpesviruses. To overcome this difficulty and develop useful models for these viruses, three main approaches have been employed: first, experimental infection of laboratory animals [mainly new-world non-human primates (NHPs)] with EBV or KSHV; second, experimental infection of NHPs (mainly old-world NHPs) with EBV- or KSHV-related gammaherpesviruses inherent to respective NHPs; and third, experimental infection of humanized mice, i.e., immunodeficient mice engrafted with functional human cells or tissues (mainly human immune system components) with EBV or KSHV. These models have recapitulated diseases caused by human gammaherpesviruses, their asymptomatic persistent infections, as well as both innate and adaptive immune responses to them, facilitating the development of novel therapeutic and prophylactic measures against these viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antsiferova O, Muller A, Ramer PC, Chijioke O, Chatterjee B, Raykova A, Planas R, Sospedra M, Shumilov A, Tsai MH, Delecluse HJ, Münz C (2014) Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog 10(8):e1004333. https://doi.org/10.1371/journal.ppat.1004333 PPATHOGENS-D-14-00808 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzi T, Lunemann A, Murer A, Ueda S, Beziat V, Malmberg KJ, Staubli G, Gysin C, Berger C, Münz C, Chijioke O, Nadal D (2014) Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 124(16):2533–2543. https://doi.org/10.1182/blood-2014-01-553024 blood-2014-01-553024 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HWT (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447 (7142):326–329. nature05762 [pii] https://doi.org/10.1038/nature05762

    Article  CAS  PubMed  Google Scholar 

  • Barton E, Mandal P, Speck SH (2011) Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397. https://doi.org/10.1146/annurev-immunol-072710-081639

    Article  PubMed  CAS  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301(5900):527–530

    Article  CAS  PubMed  Google Scholar 

  • Bruce AG, Ryan JT, Thomas MJ, Peng X, Grundhoff A, Tsai CC, Rose TM (2013) Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi’s sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque. J Virol 87 (24):13676–13693. https://doi.org/10.1128/JVI.02331-13 JVI.02331-13 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon MJ, Pisa P, Fox RI, Cooper NR (1990) Epstein-Barr virus induces aggressive lymphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J Clin Invest 85(4):1333–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Wachtman LM, Pearson CB, Lee JS, Lee HR, Lee SH, Vieira J, Mansfield KG, Jung JU (2009) Non-human primate model of Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog 5(10):e1000606. https://doi.org/10.1371/journal.ppat.1000606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, Marcenaro E, Leung CS, Antsiferova O, Landtwing V, Bossart W, Moretta A, Hassan R, Boyman O, Niedobitek G, Delecluse HJ, Capaul R, Münz C (2013) Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 5(6):1489–1498. https://doi.org/10.1016/j.celrep.2013.11.041 S2211-1247(13)00725-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Damania B (2007) EBV and KSHV-related herpesviruses in non-human primates. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, New York, pp 1013–1114

    Google Scholar 

  • Damania BA, Cesarman E (2013) Kaposi’s sarcoma-associated herpesvirus. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields virology, vol II. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 2080–2128

    Google Scholar 

  • Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W (2003) Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. Cancer Res 63(11):2982–2989

    PubMed  CAS  Google Scholar 

  • Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME, Bare C, McCune JM, Ganem D (1999) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J Exp Med 190(12):1857–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ensser A, Fleckenstein B (2007) Gammaherpesviruses of new world primates. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, New York, pp 1076–1092

    Google Scholar 

  • Epstein MA, Morgan AJ, Finerty S, Randle BJ, Kirkwood JK (1985) Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature 318(6043):287–289

    Article  CAS  PubMed  Google Scholar 

  • Estep RD, Wong SW (2013) Rhesus macaque rhadinovirus-associated disease. Curr Opin Virol 3(3):245–250. https://doi.org/10.1016/j.coviro.2013.05.016 S1879-6257(13)00076-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estep RD, Rawlings SD, Li H, Manoharan M, Blaine ET, O’Connor MA, Messaoudi I, Axthelm MK, Wong SW (2014) The rhesus rhadinovirus CD200 homologue affects immune responses and viral loads during in vivo infection. J Virol 88 (18):10635–10654. https://doi.org/10.1128/JVI.01276-14 JVI.01276-14 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk L, Deinhardt F, Wolfe L, Johnson D, Hilgers J, de The G (1976) Epstein-Barr virus: experimental infection of Callithrix Jacchus marmosets. Int J Cancer 17(6):785–788

    Article  CAS  PubMed  Google Scholar 

  • Foreman KE, Friborg J, Chandran B, Katano H, Sata T, Mercader M, Nabel GJ, Nickoloff BJ (2001) Injection of human herpesvirus-8 in human skin engrafted on SCID mice induces Kaposi’s sarcoma-like lesions. J Dermatol Sci 26(3):182–193 doi:S0923181101000871 [pii]

    Google Scholar 

  • Fujiwara S, Kimura H, Imadome K, Arai A, Kodama E, Morio T, Shimizu N, Wakiguchi H (2014) Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int 56(2):159–166. https://doi.org/10.1111/ped.12314

    Article  PubMed  Google Scholar 

  • Fujiwara S, Imadome K, Takei M (2015) Modeling EBV infection and pathogenesis in new-generation humanized mice. Exp Mol Med 47:e135. https://doi.org/10.1038/emm.2014.88 emm201488 [pii]

    Article  CAS  Google Scholar 

  • Gregorovic G, Boulden EA, Bosshard R, Elgueta Karstegl C, Skalsky R, Cullen BR, Gujer C, Ramer P, Münz C, Farrell PJ (2015) Epstein-Barr Viruses (EBVs) deficient in EBV-encoded RNAs have higher levels of latent membrane protein 2 RNA expression in Lymphoblastoid cell lines and efficiently establish persistent infections in humanized mice. J Virol 89(22):11711–11714. https://doi.org/10.1128/JVI.01873-15 JVI.01873-15 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617. https://doi.org/10.1146/annurev.immunol.25.022106.141553

    Article  PubMed  CAS  Google Scholar 

  • Imadome K, Yajima M, Arai A, Nakazawa A, Kawano F, Ichikawa S, Shimizu N, Yamamoto N, Morio T, Ohga S, Nakamura H, Ito M, Miura O, Komano J, Fujiwara S (2011) Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog 7(10):e1002326. https://doi.org/10.1371/journal.ppat.1002326 PPATHOGENS-D-11-00208 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182

    Article  CAS  PubMed  Google Scholar 

  • Johannessen I, Crawford DH (1999) In vivo models for Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev Med Virol 9(4):263–277. https://doi.org/10.1002/(SICI)1099-1654(199910/12)9:4<263::AID-RMV256>3.0.CO;2-D [pii]

    Article  CAS  PubMed  Google Scholar 

  • Khan G, Ahmed W, Philip PS, Ali MH, Adem A (2015) Healthy rabbits are susceptible to Epstein-Barr virus infection and infected cells proliferate in immunosuppressed animals. Virol J 12:28. https://doi.org/10.1186/s12985-015-0260-1 s12985-015-0260-1 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutok JL, Klumpp S, Simon M, MacKey JJ, Nguyen V, Middeldorp JM, Aster JC, Wang F (2004) Molecular evidence for rhesus lymphocryptovirus infection of epithelial cells in immunosuppressed rhesus macaques. J Virol 78(7):3455–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwana Y, Takei M, Yajima M, Imadome K, Inomata H, Shiozaki M, Ikumi N, Nozaki T, Shiraiwa H, Kitamura N, Takeuchi J, Sawada S, Yamamoto N, Shimizu N, Ito M, Fujiwara S (2011) Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS One 6(10):e26630. https://doi.org/10.1371/journal.pone.0026630 PONE-D-11-16695 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EK, Joo EH, Song KA, Choi B, Kim M, Kim SH, Kim SJ, Kang MS (2015) Effects of lymphocyte profile on development of EBV-induced lymphoma subtypes in humanized mice. Proc Natl Acad Sci USA 112(42):13081–13086. https://doi.org/10.1073/pnas.1407075112 1407075112 [pii]

    Article  CAS  Google Scholar 

  • Leskowitz R, Fogg MH, Zhou XY, Kaur A, Silveira EL, Villinger F, Lieberman PM, Wang F, Ertl HC (2014) Adenovirus-based vaccines against rhesus lymphocryptovirus EBNA-1 induce expansion of specific CD8+ and CD4+ T cells in persistently infected rhesus macaques. J Virol 88 9:4721–4735. https://doi.org/10.1128/JVI.03744-13 JVI.03744-13 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Collins CM, Mendel JB, Iwakoshi NN, Speck SH (2009) Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes. PLoS Pathog 5(11):e1000677. https://doi.org/10.1371/journal.ppat.1000677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang X, Paden CR, Morales FM, Powers RP, Jacob J, Speck SH (2011) Murine gamma-herpesvirus immortalization of fetal liver-derived B cells requires both the viral cyclin D homolog and latency-associated nuclear antigen. PLoS Pathog 7(9):e1002220. https://doi.org/10.1371/journal.ppat.1002220 PPATHOGENS-D-11-00810 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Tsai MH, Shumilov A, Poirey R, Bannert H, Middeldorp JM, Feederle R, Delecluse HJ (2015) The Epstein-Barr virus BART miRNA cluster of the M81 strain modulates multiple functions in primary B cells. PLoS Pathog 11(12):e1005344. https://doi.org/10.1371/journal.ppat.1005344 PPATHOGENS-D-15-01749 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longnecker RM, Kieff E, Cohen JI (2013) Epstein-Barr virus. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields virology, vol II, 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1898–1959

    Google Scholar 

  • Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML, Tang W, Gumperz JE, Kenney SC (2011) A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85(1):165–177. https://doi.org/10.1128/JVI.01512-10 JVI.01512-10 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma SD, Xu X, Plowshay J, Ranheim EA, Burlingham WJ, Jensen JL, Asimakopoulos F, Tang W, Gulley ML, Cesarman E, Gumperz JE, Kenney SC (2015) LMP1-deficient Epstein-Barr virus mutant requires T cells for lymphomagenesis. J Clin Invest 125(1):304–315. https://doi.org/10.1172/JCI76357 76357 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, Gumperz JE, Kenney SC (2016) PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog 12(5):e1005642. https://doi.org/10.1371/journal.ppat.1005642 PPATHOGENS-D-15-02021 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma SD, Tsai MH, Romero-Masters JC, Ranheim EA, Huebner SM, Bristol J, Delecluse HJ, Kenney SC (2017) LMP1 and LMP2A collaborate to promote Epstein-Barr virus (EBV)-induced B cell lymphomas in a cord blood-humanized mouse model but are not essential. J Virol. JVI.01928-16 [pii] https://doi.org/10.1128/JVI.01928-16

  • Mansfield KG, Westmoreland SV, DeBakker CD, Czajak S, Lackner AA, Desrosiers RC (1999) Experimental infection of rhesus and pig-tailed macaques with macaque rhadinoviruses. J Virol 73(12):10320–10328

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuda G, Imadome K, Kawano F, Mochizuki M, Ochiai N, Morio T, Shimizu N, Fujiwara S (2015) Cellular immunotherapy with ex vivo expanded cord blood T cells in a humanized mouse model of EBV-associated lymphoproliferative disease. Immunotherapy 7(4):335–341. https://doi.org/10.2217/imt.15.2

    Article  PubMed  CAS  Google Scholar 

  • McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241(4873):1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12(11):1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam A, Rosenzweig M, Lee-Parritz D, Annis B, Johnson RP, Wang F (1997) An animal model for acute and persistent Epstein-Barr virus infection. Science 276(5321):2030–2033

    Article  CAS  PubMed  Google Scholar 

  • Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335(6187):256–259

    Article  CAS  PubMed  Google Scholar 

  • Mühe J, Wang F (2015) Non-human primate Lymphocryptoviruses: past, present, and future. Curr Top Microbiol Immunol 391:385–405. https://doi.org/10.1007/978-3-319-22834-1_13

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Iwata S, Siddiquey MN, Kanazawa T, Goshima F, Kawashima D, Kimura H, Tsurumi T (2013) Heat shock protein 90 inhibitors repress latent membrane protein 1 (LMP1) expression and proliferation of Epstein-Barr virus-positive natural killer cell lymphoma. PLoS One 8(5):e63566. https://doi.org/10.1371/journal.pone.0063566 PONE-D-12-34778 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P, Duran EM, Asgari Z, Hooper AT, La Perle KM, Hilsher C, Gao SJ, Dittmer DP, Rafii S, Mesri EA (2007) In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell 11(3):245–258. S1535-6108(07)00031-1 [pii] https://doi.org/10.1016/j.ccr.2007.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niller HH, Wolf H, Ay E, Minarovits J (2011) Epigenetic dysregulation of Epstein-Barr virus latency and development of autoimmune disease. Adv Exp Med Biol 711:82–102

    Article  CAS  PubMed  Google Scholar 

  • Ohashi M, Fogg MH, Orlova N, Quink C, Wang F (2012) An Epstein-Barr virus encoded inhibitor of Colony stimulating Factor-1 signaling is an important determinant for acute and persistent EBV infection. PLoS Pathog 8(12):e1003095. https://doi.org/10.1371/journal.ppat.1003095 PPATHOGENS-D-12-02098 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno K, Takashima K, Kanai K, Ohashi M, Hyuga R, Sugihara H, Kuwamoto S, Kato M, Sano H, Sairenji T, Kanzaki S, Hayashi K (2010) Epstein-Barr virus can infect rabbits by the intranasal or peroral route: an animal model for natural primary EBV infection in humans. J Med Virol 82(6):977–986. https://doi.org/10.1002/jmv.21597

    Article  PubMed  CAS  Google Scholar 

  • Orzechowska BU, Powers MF, Sprague J, Li H, Yen B, Searles RP, Axthelm MK, Wong SW (2008) Rhesus macaque rhadinovirus-associated non-Hodgkin lymphoma: animal model for KSHV-associated malignancies. Blood 112(10):4227–4234. https://doi.org/10.1182/blood-2008-04-151498 blood-2008-04-151498 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons CH, Adang LA, Overdevest J, O’Connor CM, Taylor JR Jr, Camerini D, Kedes DH (2006) KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J Clin Invest 116(7):1963–1973. https://doi.org/10.1172/JCI27249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picchio GR, Sabbe RE, Gulizia RJ, McGrath M, Herndier BG, Mosier DE (1997) The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology 238(1):22–29. S0042-6822(97)98822-X [pii] https://doi.org/10.1006/viro.1997.8822

    Article  CAS  PubMed  Google Scholar 

  • Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S (2016) Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4(9):e609–e616. https://doi.org/10.1016/S2214-109X(16)30143-7 S2214-109X(16)30143-7 [pii]

    Article  PubMed  Google Scholar 

  • Qiu J, Smith P, Leahy L, Thorley-Lawson DA (2015) The Epstein-Barr virus encoded BART miRNAs potentiate tumor growth in vivo. PLoS Pathog 11(1):e1004561. https://doi.org/10.1371/journal.ppat.1004561 PPATHOGENS-D-14-01638 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramer JC, Garber RL, Steele KE, Boyson JF, O’Rourke C, Thomson JA (2000) Fatal lymphoproliferative disease associated with a novel gammaherpesvirus in a captive population of common marmosets. Comp Med 50(1):59–68

    PubMed  CAS  Google Scholar 

  • Renne R, Dittmer D, Kedes D, Schmidt K, Desrosiers RC, Luciw PA, Ganem D (2004) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SIV-positive and SIV-negative rhesus macaques. J Med Primatol 33(1):1–9. https://doi.org/10.1046/j.1600-0684.2003.00043.x JMP043 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Rivailler P, Cho YG, Wang F (2002a) Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76(23):12055–12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivailler P, Jiang H, Cho YG, Quink C, Wang F (2002b) Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J Virol 76(1):421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivailler P, Carville A, Kaur A, Rao P, Quink C, Kutok JL, Westmoreland S, Klumpp S, Simon M, Aster JC, Wang F (2004) Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood 104(5):1482–1489. https://doi.org/10.1182/blood-2004-01-0342 2004-01-0342 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Robinson BA, Estep RD, Messaoudi I, Rogers KS, Wong SW (2012) Viral interferon regulatory factors decrease the induction of type I and type II interferon during rhesus macaque rhadinovirus infection. J Virol 86(4):2197–2211. https://doi.org/10.1128/JVI.05047-11 JVI.05047-11 [pii]

    Article  CAS  PubMed Central  Google Scholar 

  • Rohner E, Wyss N, Trelle S, Mbulaiteye SM, Egger M, Novak U, Zwahlen M, Bohlius J (2014) HHV-8 seroprevalence: a global view. Syst Rev 3:11. https://doi.org/10.1186/2046-4053-3-11 2046-4053-3-11 [pii]

  • Rose TM, Strand KB, Schultz ER, Schaefer G, Rankin GW Jr, Thouless ME, Tsai CC, Bosch ML (1997) Identification of two homologs of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. J Virol 71(5):4138–4144

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rowe M, Young LS, Crocker J, Stokes H, Henderson S, Rickinson AB (1991) Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med 173(1):147–158

    Article  CAS  PubMed  Google Scholar 

  • Sarosiek KA, Cavallin LE, Bhatt S, Toomey NL, Natkunam Y, Blasini W, Gentles AJ, Ramos JC, Mesri EA, Lossos IS (2010) Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci USA 107(29):13069–13074. https://doi.org/10.1073/pnas.1002985107 1002985107 [pii]

    Article  Google Scholar 

  • Sashihara J, Hoshino Y, Bowman JJ, Krogmann T, Burbelo PD, Coffield VM, Kamrud K, Cohen JI (2011) Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge. PLoS Pathog 7(10):e1002308. https://doi.org/10.1371/journal.ppat.1002308 PPATHOGENS-D-11-01479 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M, Takahashi R, Kuzushima K, Ito M, Takada K, Koyanagi Y (2011) A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 117(21):5663–5673. https://doi.org/10.1182/blood-2010-09-305979 blood-2010-09-305979 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Searles RP, Bergquam EP, Axthelm MK, Wong SW (1999) Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 73(4):3040–3053

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shope T, Dechairo D, Miller G (1973) Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. Proc Natl Acad Sci USA 70(9):2487–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489. doi:174/10/6477 [pii]

    Google Scholar 

  • Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA 107(29):13022–13027. https://doi.org/10.1073/pnas.1000475107 1000475107 [pii]

  • Smith PA, Merritt D, Barr L, Thorley-Lawson DA (2011) An orthotopic model of metastatic nasopharyngeal carcinoma and its application in elucidating a therapeutic target that inhibits metastasis. Genes Cancer 2(11):1023–1033. https://doi.org/10.1177/1947601912440878 10.1177_1947601912440878 [pii]

    Article  CAS  Google Scholar 

  • Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A, Cohen JI, Münz C (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206(6):1423–1434. https://doi.org/10.1084/jem.20081720 jem.20081720 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Schattgen SA, Pisitkun P, Jorgensen JP, Hilterbrand AT, Wang LJ, West JA, Hansen K, Horan KA, Jakobsen MR, O’Hare P, Adler H, Sun R, Ploegh HL, Damania B, Upton JW, Fitzgerald KA, Paludan SR (2015) Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol 194 (4):1819–1831. https://doi.org/10.4049/jimmunol.1402495 jimmunol.1402495 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA (1994) Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145(4):818–826

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takashima K, Ohashi M, Kitamura Y, Ando K, Nagashima K, Sugihara H, Okuno K, Sairenji T, Hayashi K (2008) A new animal model for primary and persistent Epstein-Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. J Med Virol 80(3):455–466. https://doi.org/10.1002/jmv.21102

    Article  PubMed  CAS  Google Scholar 

  • Takei M, Mitamura K, Fujiwara S, Horie T, Ryu J, Osaka S, Yoshino S, Sawada S (1997) Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int Immunol 9(5):739–743

    Article  CAS  PubMed  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667):104–107

    Article  CAS  PubMed  Google Scholar 

  • Virgin HW, Latreille P, Wamsley P, Hallsworth K, Weck KE, Dal Canto AJ, Speck SH (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71(8):5894–5904

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wahl A, Linnstaedt SD, Esoda C, Krisko JF, Martinez-Torres F, Delecluse HJ, Cullen BR, Garcia JV (2013) A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol 87 (10):5437–5446. https://doi.org/10.1128/JVI.00281-13 JVI.00281-13 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LX, Kang G, Kumar P, Lu W, Li Y, Zhou Y, Li Q, Wood C (2014) Humanized-BLT mouse model of Kaposi's sarcoma-associated herpesvirus infection. Proc Natl Acad Sci USA 111(8):3146–3151. https://doi.org/10.1073/pnas.1318175111 1318175111 [pii]

    Article  CAS  Google Scholar 

  • Westmoreland SV, Mansfield KG (2008) Comparative pathobiology of Kaposi sarcoma-associated herpesvirus and related primate rhadinoviruses. Comp Med 58(1):31–42

    PubMed  PubMed Central  Google Scholar 

  • White DW, Keppel CR, Schneider SE, Reese TA, Coder J, Payton JE, Ley TJ, Virgin HW, Fehniger TA (2010) Latent herpesvirus infection arms NK cells. Blood 115(22):4377–4383. https://doi.org/10.1182/blood-2009-09-245464 blood-2009-09-245464 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, Savoldo B, Coutinho R, Bodor C, Gribben J, Ibrahim HA, Bower M, Nourse JP, Gandhi MK, Middeldorp J, Cader FZ, Murray P, Münz C, Allday MJ (2012) EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest 122(4):1487–1502. https://doi.org/10.1172/JCI58092 58092 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehurst CB, Li G, Montgomery SA, Montgomery ND, Su L, Pagano JS (2015) Knockout of Epstein-Barr virus BPLF1 retards B-cell transformation and lymphoma formation in humanized mice. MBio 6(5):e01574–e01515. https://doi.org/10.1128/mBio.01574-15 e01574-15 [pii] mBio.01574-15 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SW, Bergquam EP, Swanson RM, Lee FW, Shiigi SM, Avery NA, Fanton JW, Axthelm MK (1999) Induction of B cell hyperplasia in simian immunodeficiency virus-infected rhesus macaques with the simian homologue of Kaposi's sarcoma-associated herpesvirus. J Exp Med 190(6):827–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Vieira J, Fiore N, Banerjee P, Sieburg M, Rochford R, Harrington W, Jr., Feuer G (2006) KSHV/HHV-8 infection of human hematopoietic progenitor (CD34+) cells: persistence of infection during hematopoiesis in vitro and in vivo. Blood 108(1):141–151. 2005-04-1697 [pii] https://doi.org/10.1182/blood-2005-04-1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu TT, Qian J, Ang J, Sun R (2012) Vaccine prospect of Kaposi sarcoma-associated herpesvirus. Curr Opin Virol 2(4):482–488. https://doi.org/10.1016/j.coviro.2012.06.005 S1879-6257(12)00100-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, Hu H, Lam KT, Chan GC, Yang Y, Chen H, Tsao GS, Bonneville M, Lau YL, Tu W (2014) Targeted activation of human Vgamma9Vdelta2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26(4):565–576. https://doi.org/10.1016/j.ccr.2014.07.026 S1535-6108(14)00314-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Honda M, Yamamoto N, Fujiwara S (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198(5):673–682. https://doi.org/10.1086/590502

    Article  PubMed  CAS  Google Scholar 

  • Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Yamamoto N, Fujiwara S (2009) T cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis 200(10):1611–1615. https://doi.org/10.1086/644644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in my laboratory has been carried out in collaboration with many colleagues and students to whom I express my utmost gratitude. The work was supported by grants from the Ministry of Health, Labour and Welfare of Japan for the Research on Measures for Intractable Diseases (H21-Nanchi-094, H22-Nanchi-080, H24-Nanchi-046) and by the Practical Research Project for Rare/Intractable Diseases (16ek0109098) from Japan Agency for Medical Research and Development, AMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyoshi Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujiwara, S. (2018). Animal Models of Human Gammaherpesvirus Infections. In: Kawaguchi, Y., Mori, Y., Kimura, H. (eds) Human Herpesviruses. Advances in Experimental Medicine and Biology, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-10-7230-7_19

Download citation

Publish with us

Policies and ethics