Skip to main content

Investigation of the Cavitation Within Venturi Tube: Influence of the Generated Vortex

  • Conference paper
  • First Online:
Advances in Hydroinformatics

Abstract

The main scope of the paper is evaluation of the experimental results and comparison of the dynamics of the vortex affected cavitating flow with the dynamics of purely axial flow within the Venturi nozzle. The analysis of the high-speed records with the sampling frequency of 20,000 images per second will be presented. Records will be analyzed using the proper orthogonal decomposition (POD) and spectral analysis of the pixel intensity within the selected region of images. These analyses will be done for the wide range of regimes for the both experimental configurations (with and without the swirl generator). Analysis of the pressure pulsations and vibrations will be utilized for the verification of the results. The cavitation patterns affected by the presence of the vortex will be described and compared with the case of axial inflow. The analysis of the experimental data will be complemented with the numerical computations of the chosen regimes carried out using the OpenFoam v1606+ and its multiphase interPhaseChangeFoam solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dörfler, P., Sick, M., & Coutu, A. (2013). Flow-induced pulsation and vibration in hydroelectric machinery: engineer’s guidebook for planning, design and troubleshooting. London: Springer. ISBN 978-1-4471-4251-5.

    Book  Google Scholar 

  2. Jančura, D., Mikula, P., Maršálek, B., Rudolf, P., & Pochylý, F. (2014). Selective method for cyanobacterial bloom removal: hydraulic jet cavitation experience. Aquaculture International, 22(2), 509–521. doi:https://doi.org/10.1007/s10499-013-9660-7.

  3. Kozák, J., Rudolf, P., Štefan, D., Hudec, M., & Gríger, M. (2015). Analysis of pressure pulsations of cavitating flow in converging-diverging nozzle. In 6th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems.

    Google Scholar 

  4. Kozák, J., Rudolf, P., Štefan, D., Huzlík, R., Hudec, M. et al. (2017). Transition of cavitating flow to supercavitation within Venturi nozzle—hysteresis investigation. In EPJ Web of Conferences.

    Google Scholar 

  5. Rudolf, P., Hudec, M., & Zubík, P. (2011). Experimental study of straight cavitating vortex tube. In Recent Advances in Fluid Mechanics and Heat and Mass Transfer. Florence (pp. 373–378). Italy: WSEAS Press. ISBN: 978-1-61804-026- 8.

    Google Scholar 

  6. Jablonská, J., Kozubková, M., Himr D., & Weisz. M. (2016). Methods of experimental investigation of cavitation in a convergent—divergent nozzle of rectangular cross section. Measurement Science Review, 16. doi:https://doi.org/10.1515/msr-2016-0024.

  7. Brinkhorst, S., von Lavante, E., & Wendt, G. (2017). Experimental and numerical investigation of the cavitation-induced choked flow in a Herschel Venturi-tube. Flow Measurement and Instrumentation, 54, 56–67. https://doi.org/10.1016/j.flowmeasinst.2016.12.006.

    Article  Google Scholar 

  8. Cooley, J. W., & Tukey, J.W. (1965). An algorithm for the machine calculation of complex fourier series. Mathematics Of Computation, 19(90). doi:https://doi.org/10.1090/S0025-5718-1965-0178586-1.

  9. Sedlář, M., Komárek, M., Rudolf, P., Kozák, J., & Huzlík, R. (2015). Numerical and experimental research on unsteady cavitating flow around NACA 2412 hydrofoil. IOP Conference Series: Materials Science and Engineering, 72(2). doi:https://doi.org/10.1088/1757-899X/72/2/022014.

  10. Berkooz, G., Holmes, P., & Lumley, J. (1993). The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics., 25(1), 539–575.

    Article  MathSciNet  Google Scholar 

  11. Stefan, D., & Rudolf, P. (2015). Proper orthogonal decomposition of pressure fields in a draft tube cone of the francis (Tokke) turbine model. Journal of Physics: Conference Series, 579. doi:https://doi.org/10.1088/1742-6596/579/1/012002.

  12. Rudolf, P., Štefan, D., Sedlář, M., Kozák, J., Habán, V., & Huzlík, R. (2015). Spatio-temporal description of the cavitating flow behavior around NACA 2412 hydrofoil. Journal of Physics: Conference Series, 656. doi:https://doi.org/10.1088/1742-6596/656/1/012168.

  13. Tomov, P., Danlos, A., Khelladi, S., Ravelet, F., Sarraf, C., & Bakir, F. (2015). POD study of aerated cavitation in a Venturi nozzle. Journal of Physics: Conference Series, 656. doi:https://doi.org/10.1088/1742-6596/656/1/012171.

  14. Danlos, A., Ravelet, F., Coutier-Delgosha, O., Bakir, F., & Sarraf, C. (2014). Cavitation regime detection through Proper Orthogonal Decomposition:Dynamics analysis of the sheet cavity on a grooved convergent–divergent nozzle. International Journal of Heat and Fluid Flow, 47. doi:https://doi.org/10.1016/j.ijheatfluidflow.2014.02.001.

Download references

Acknowledgements

Czech Science Foundation is gratefully acknowledged for support of this research under Project No. 16-18316S “Principles and mechanisms causing microorganism elimination by hydrodynamic cavitation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kozák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozák, J. et al. (2018). Investigation of the Cavitation Within Venturi Tube: Influence of the Generated Vortex. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds) Advances in Hydroinformatics . Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-10-7218-5_73

Download citation

Publish with us

Policies and ethics