• Amit BhaduriEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 264)


Variation of interatomic bonding force (cohesive force) with interatomic spacing. Evaluation of ideal fracture strength (cohesive strength in an ideally perfect crystal). Relation of geometrical discontinuity (flaw) in a body with theoretical (or, elastic) stress concentration factor and material’s fracture strength. Effects of notch on material’s fracture behaviour: ‘notch strengthening’ and ‘notch weakening’. Distributions of elastic stresses ahead of a notch and of elastic/plastic stresses during local yielding in the vicinity of a notch in plane stress and plane strain conditions. Characteristic features of fracture process. Fractography describing dimpled fracture (different shapes of the dimple depending on the state of stress), cleavage fracture, quasi-cleavage fracture and intergranular fracture. Griffith theory of brittle fracture and its applicability. Modification of Griffith theory by Orowan relation for brittle metals. Modification by Irwin approach introducing ‘elastic strain energy release rate’, its significance and experimental measurement. Stress intensity factor and its expressions depending on the types of loading and the geometry of crack and specimen configurations. Different modes of crack surface displacement. Relationship between energy release rate and stress intensity factor. Plastic-zone size at crack tip and effective stress intensity factor due to crack-tip plasticity in plane stress and strain conditions. Fracture toughness: plane stress versus plane strain. Test to determine plane-strain fracture toughness and design philosophy using it. Problems and solutions.


  1. ASTM E399 (editorially corrected in 2010): Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials. Designation: E399-09. ASTM International, PA (2009). doi:
  2. Beachem, C.D.: Trans. ASME J. Basic Eng. Ser. D 87, 299 (1965)CrossRefGoogle Scholar
  3. Beachem, C.D.: Metall. Trans. 6A, 377–383 (1975)CrossRefGoogle Scholar
  4. Birkle, A.J., Wei, R.P., Pellissier, G.E.: Trans. ASM 59, 981 (1966)Google Scholar
  5. Brown, W.F. Jr., Srawley, J.E.: Plane Strain Crack Toughness Testing of High Strength Metallic Materials. ASTM STP 410 (1966)Google Scholar
  6. Chang, L.C.: J. Mech. Phys. Solids 3, 212–217 (1955)CrossRefGoogle Scholar
  7. Dieter, G.E.: Mechanical Metallurgy, 3rd edn, p. 352. McGraw-Hill Book Company (UK) Limited, London (1988)Google Scholar
  8. Feddersen, C.: ASTM STP 410, 77 (1967)Google Scholar
  9. Felbeck, D.K., Orowan, E.: Welding J. 34, 570s–757s (1955)Google Scholar
  10. Griffith, A.A.: Philos. Trans. R. Soc. London 221A, 163 (1920) (This article has been republished with additional commentary in 1968. Trans. ASM 61, 871)Google Scholar
  11. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials, 3rd edn. Wiley, New York, pp. 254, 281–286, 297, 304–305, 307 (1989)Google Scholar
  12. Hull, D.: Acta Metall. 9, 191 (1961)CrossRefGoogle Scholar
  13. Hull, D.: In: Drucker, D.C., Gilman, J.J. (eds.) Fracture in Solids, pp. 417–453. Interscience Publishers Inc., New York (1963)Google Scholar
  14. Inglis, C.E.: Trans. Inst. Nav. Archit., London 55(pt. I), 219–230 (1913)Google Scholar
  15. Irwin, G.R.: Fracturing of Metals, p. 147. ASM, Cleveland, Ohio (1949)Google Scholar
  16. Irwin, G.R.: Handbuch der Physik, vol. VI, p. 551. Springer, Berlin (1958)Google Scholar
  17. Irwin, G.R., Kies, J.A.: Weld. J. Res. Suppl. 33, 193s (1954)Google Scholar
  18. Irwin, G.R., Kies, J.A., Smith, H.L.: Proc. ASTM 58, 640–660 (1958)Google Scholar
  19. Irwin, G.R., Krafft, J.M., Paris, P.C., Wells, A.A.: Basic Aspects of Crack Growth and Fracture. NRL Report 6598, Naval Research Laboratory, Washington, D.C., 21 Nov 1967, pp. 9–10, 38 (1967)Google Scholar
  20. Joffe, A.F.: The Physics of Crystals. McGraw-Hill Book Company, New York (1928)Google Scholar
  21. Klier, E.P.: Trans. ASM 43, 935–957 (1951)Google Scholar
  22. Knott, J.F.: Linear elastic fracture mechanics. In: Fundamentals of Fracture Mechanics. Butterworth & Co (Publishers) Ltd., London, p. 101 (1973)Google Scholar
  23. McClintock, F.A., Irwin, G.R.: ASTM STP 381, 84 (1965)Google Scholar
  24. Murakami, Y. (ed.): Stress Intensity Factors Handbook. Pergamon Oxford (1987)Google Scholar
  25. Orowan, E.: Trans. Inst. Eng. Schipbuild, Scot. 89, 165 (1945)Google Scholar
  26. Orowan, E.: Fatigue and Fracture of Metals, p. 139. MIT Press, Cambridge, MA (1950)Google Scholar
  27. Paris, P.C., Sih, G.C.M.: In: Srawley, J.E., Brown, W.F. (eds.) Fracture Toughness Testing, ASTM STP No. 381, Philadelphia, PA., p. 30 (1965)Google Scholar
  28. Passoja, D.R., Hill, D.C.: Metall. Trans. 5, 1851 (1974)CrossRefGoogle Scholar
  29. Peterson, R.E.: Stress-Concentration Design Factors. Wiley, New York (1974)Google Scholar
  30. Reed-Hill, R.E.: Fracture. In: Physical Metallurgy Principles, 2nd edn., Litton Educational Publishing, Inc., New York, p. 753 (1973)Google Scholar
  31. Sih, G.C.M.: Handbook of Stress Intensity Factors. Lehigh University, Bethlehem, PA (1973)Google Scholar
  32. Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks Handbook. Del Research, Hellertown, PA (1973)Google Scholar
  33. Van Stone, R.H., Cox, T.B., Low, J.R. Jr., Psioda, J.A.: Int. Met. Rev. 30(4), 157 (1985)Google Scholar
  34. Westergaard, H.M.: Trans. ASME J. Appl. Mech. 61, 49 (1939)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations