• Amit BhaduriEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 264)


Fatigue fracture and its characteristic appearance. Various types of fluctuating stress cycle and its components. Standard fatigue test and SN diagram. Fatigue properties, and reason for existence of fatigue limit. Statistical nature of fatigue and estimation of anticipated fatigue life by means of standard statistical procedure. Fatigue crack initiation through persistent slip bands, such as slip-band extrusions and slip-band intrusions. Fatigue crack growth: Stage I and Stage II. Crack growth rate and ‘Paris’ law. Cumulative fatigue damage with definitions of overstressing, understressing and coaxing. Methods of presenting SN data, where mean stress is not zero. Design criteria for mean stress effects: Gerber relation, Goodman relation or Goodman diagram to prevent fatigue failure, and Soderberg relation to prevent yielding. Effects of stress concentration, specimen size, metallurgical variables, frequency of stress cycling, corrosive environment, low and high temperature on fatigue and thermal fatigue. Effects of specimen surface, such as its roughness, properties and residual stress on fatigue. Surface treatments beneficial to fatigue and metallurgical processes detrimental to fatigue. Cyclic strain-controlled fatigue, describing cyclic strain hardening and cyclic strain softening, and their dependency on material’s stacking fault energy. Low-cycle fatigue and Coffin–Manson relation. Total fatigue strain–life equation, and its plot approaching towards the plastic strain–life curve at large total strain amplitudes and the elastic strain–life curve at low total strain amplitudes. Creep–fatigue interaction, where suggested important design approaches are: cumulative damage rule, modification of Goodman law, frequency-modified fatigue relation and strain-range partitioning method. Increasing amplitude tests, such as step test and Prot test. Problems and solutions.


  1. Allen, N.P., Forrest, P.G.: Inst. Mech. Eng. ASME International Conference on the Fatigue of Metals, p. 327 (1956)Google Scholar
  2. ASTM STP: Manual on Fatigue Testing. ASTM STP No. 91, American Society for Testing Materials, Philadelphia, Pa, pp. 6–65 (1949)Google Scholar
  3. ASTM STP: A Tentative Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data (Supplement to Manual on Fatigue Testing, STP No. 91). ASTM STP No. 91-A, American Society for Testing Materials, Philadelphia, Pa., pp. 4, 11–14 (1958)Google Scholar
  4. ASTM STP: A Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data (Supplement to Manual on Fatigue Testing, STP No. 91). ASTM STP No. 91-A, American Society for Testing and Materials, Philadelphia, Pa., p. 67 (1963)Google Scholar
  5. Bennett, J.A.: Proc. ASTM 46, 693–714 (1946)Google Scholar
  6. Borik, F., Chapman, R.D.: The effect of microstructure on the fatigue strength of a high carbon steel. Trans. ASM 53, 447–465 (1961)Google Scholar
  7. Coffin, L.F.: Proc. I. Mech. E. 188, 109 (1974)CrossRefGoogle Scholar
  8. Coffin Jr., L.F.: Metall. Trans. 2, 3105–3113 (1971)CrossRefGoogle Scholar
  9. Coffin Jr., L.F.: A study of cyclic thermal stresses in a ductile metal. Trans. ASME Am. Soc. Mech. Eng. 76, 931–950 (1954)Google Scholar
  10. Corten, H.T., Dimoff, T., Dolan, T.J.: An appraisal of the prot method of fatigue testing. Proc. ASTM 54, 875–894 (1954)Google Scholar
  11. Courtney, T.H.: Mechanical Behavior of Materials, p. 540. McGraw-Hill Publishing Company, New York (1990)Google Scholar
  12. Dieter, G.E., Horne, G.T., Mehl, R.F.: NACA Tech. Note 3211 (1954)Google Scholar
  13. Dieter, G.E., Mehl, R.F., Horne, G.T.: Trans. ASM 47, 423–439 (1955)Google Scholar
  14. Duquette, D.J.: Fatigue and Microstructure, pp. 335–363. American Society for Metals, Metals Park, Ohio (1979)Google Scholar
  15. Epremian, E., Nippes, E.F.: Trans. ASM 40, 870–896 (1948)Google Scholar
  16. Evans, U.R., Simnad, M.T.: Proc. R. Soc. London 188A, 372 (1947)CrossRefGoogle Scholar
  17. Feltner, C.E., Laird, C.: Cyclic stress-strain response of FCC metals and alloys I. Acta Metall. 15, 1621 (1967)CrossRefGoogle Scholar
  18. Findley, W.N.: An explanation of size effect in fatigue of metals. J. Mech. Eng. Sci. 14(6), 424–428 (1972)CrossRefGoogle Scholar
  19. Forman, R.G., Kearney, V.E., Engle, R.M.: Trans. ASME J. Basic Eng. 89, 459 (1967)CrossRefGoogle Scholar
  20. Forrest, P.G.: Fatigue of Metals. Addison-Wesley, Reading (1962)Google Scholar
  21. Gensamer, M., Pearsall, E.B., Pellini, W.S., Low, J.R.: Trans. ASM. 30, 983–1020 (1942)Google Scholar
  22. Goodman, J.: Mechanics Applied to Engineering. Longmans, Green & Co., Ltd., London (1899)Google Scholar
  23. Gough, H.J.: Proc. ASTM 33(2), 3–114 (1933)Google Scholar
  24. Gough, H.J., Sopwith, D.G.: Some further experiments on atmospheric action on fatigue. J. Inst. Met. 56, 55–89 (1935)Google Scholar
  25. Grosskreutz, J.C.: Fatigue mechanism in the sub-creep range. In: Manson, S.S. (ed.) Metal Fatigue Damage-Mechanism, Detection, Avoidance, and Repair, ASTM STP 495, p. 32. American Society for Testing and Materials, Philadelphia (1971)Google Scholar
  26. Haigh, B.P., Jones, B.: J. Inst. Metals 43, 271 (1930)Google Scholar
  27. Halford, G.R.: Cumulative fatigue damage modelling—crack nucleation and early growth. Int. J. Fatigue 19(1), S253–S260 (1997)CrossRefGoogle Scholar
  28. Harris, W.J.: The influence of decarburization on the fatigue behavior of steel bolts. S&T Memo 15/65, Ministry of Aviation, U. S. Govt. Report 473394, Aug 1965 (1965)Google Scholar
  29. Koo, G.P., Riddell, M.N., O’Toole, J.L.: Polym. Eng. Sci. 7, 182 (1967)CrossRefGoogle Scholar
  30. Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. Fatigue Crack Propagation, ASTM STP No. 415, American Society for Testing and Materials, Philadelphia, Pa., p. 136 (1967)Google Scholar
  31. Landgraf, R.W.: Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP No. 467, Philadelphia, Pa., p. 3 (1970)Google Scholar
  32. Levy, J.C., Kanitkar, S.L.: J. Iron Steel Inst. Lond. 197, 296–300 (1961)Google Scholar
  33. Levy, J.C., Sinclair, G.M.: Proc. ASTM 55, 866 (1955)Google Scholar
  34. Lipsitt, H.A., Wang, D.Y.: TMS AIME 221, 918 (1961)Google Scholar
  35. Lipsitt, H.A., Horne, G.T.: Proc. ASTM 57, 587–600 (1957)Google Scholar
  36. Lorenzo, F., Laird, C.: Mater. Sci. Eng. 62, 206–210 (1984)CrossRefGoogle Scholar
  37. Manson, S.S.: Behaviour of materials under conditions of thermal stress. NASA Technical Notes, National Advisory Committee for Aeronautics, Washington, D.C., p. 2933 (1954)Google Scholar
  38. Manson, S.S., Hirschberg, M.H.: Fatigue: An Interdisciplinary Approach, p. 133. Syracuse University Press, Syracuse (1964)Google Scholar
  39. Manson, S.S., Halford, G.R., Hirschberg, M.H.: Symposium on Design for Elevated Temperature Analysis, American Society of Mechanical Engineers, New York, pp. 12–23 (1971a)Google Scholar
  40. Manson, S.S., Halford, G.R., Hirschberg, M.H.: Creep-Fatigue Analysis by Strain-Range Partitioning. NASA TM X-67838. Technical Paper proposed for presentation at the First National Pressure Vessel and Piping Conference sponsored by the American Society of Mechanical Engineers San Francisco, 10–12 May 1971 (1971b)Google Scholar
  41. McCammon, R.D., Rosenberg, K.M.: A discussion on work hardening and fatigue. Proc. R. Soc. A242, 203 (1957)CrossRefGoogle Scholar
  42. McEvily, A.J., Staehle, R.W. (eds.): Corrosion Fatigue. Nat. Assoc. Corrosion Eng., Houston (1972)Google Scholar
  43. Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. 12(3), A159–A164 (1945)Google Scholar
  44. Morrow, J.D.: Cyclic plastic strain energy and fatigue of metals. Internal Friction, Damping and Cyclic Plasticity, ASTM STP No. 378, American Society for Testing and Materials, Philadelphia, Pa., p. 72 (1965)Google Scholar
  45. Neuber, H.: Theory of notch stress-principles for exact stress calculation. J. W. Edwards Brothers (Publisher) Inc., Ann Arbor, Michigan (1946)Google Scholar
  46. Palmgren, A.: Bertschrift des Vereines Ingenieure 58, 339 (1924)Google Scholar
  47. Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. Trans. ASME Series D J. Basic Eng. Am. Soc. Mech. Eng. 85, 528–534 (1963)Google Scholar
  48. Peterson, R.E.: Stress-Concentration Design Factors. Wiley, New York (1974)Google Scholar
  49. Phillips, C.E., Heywood, R.B.: Proc. Inst. Mech. En. (London) 165, 113–124 (1951)CrossRefGoogle Scholar
  50. Prot, E.M.: Fatigue testing under progressive loading; a new technique for testing materials. Rev. de Metall. XLV(12), 481 (1948)CrossRefGoogle Scholar
  51. Ransom, J.T.: Proc. ASTM 54, 847–848 (1954a)Google Scholar
  52. Ransom, J.T.: Trans. ASM. 46, 1254–1269 (1954b)Google Scholar
  53. Ransom, J.T., Mehl, R.F.: Proc. ASTM 52, 779–790 (1952)Google Scholar
  54. Richards, C.W.: Engineering Materials Science, p. 386. Wadsworth Publishing Company Inc., Belmont (1961)Google Scholar
  55. Riches, J.W., Sherby, O.D., Dorn, J.E.: Trans. ASM 44, 852–895 (1952)Google Scholar
  56. Ritchie, R.O.: Near threshold fatigue crack propagation in steels. Int. Met. Rev. 24, 205–230 (1979)CrossRefGoogle Scholar
  57. Sherrett, F.: The Influence of Shot-Peening and Similar Surface Treatments on the Fatigue Properties of Metals. Part I, S&T Memo 1/66, Ministry of Aviation, U. S. Govt. Report 487487, Feb 1966 (1966)Google Scholar
  58. Sinclair, G.M.: Proc. ASTM 52, 743–758 (1952)Google Scholar
  59. Sines, G., Waisman, J.L. (eds.): Metal Fatigue. McGraw-Hill Book Company Inc., New York (1959)Google Scholar
  60. Smith, R.W., Hirschberg, M.H., Manson, S.S.: Fatigue Behavior of Materials Under Strain Cycling in Low and Intermediate Life Range. NASA Technical Note D-1574, National Aeronautics and Space Administration, Washington, D.C., Apr 1963 (1963)Google Scholar
  61. Soderberg, C.R.: Factor of Safety and Working Stress. Trans. ASME 52(pt. APM-52-2), 13–28 (1930)Google Scholar
  62. Solomon, H.D., Coffin Jr., L.F.: Fatigue at Elevated Temperatures. ASTM STP No. 520, ASTM, Philadelphia, Pa., pp. 112–122 (1973)Google Scholar
  63. Tavernelli, J.F., Coffin Jr., L.F.: Trans. ASM 51, 438 (1959)Google Scholar
  64. Thompson, A.W., Backofen, W.A.: The effect of grain size on fatigue. Acta Metall. 19(7), 597–606 (1971)CrossRefGoogle Scholar
  65. Thompson, N., Wadsworth, N.J., Louat, N.: The origin of fatigue fracture in copper. Phil. Mag. 1, 113–126 (1956)CrossRefGoogle Scholar
  66. Weibull, W.: Statistical Representation of Fatigue Failures in Solids. Trans. Royal Inst. of Tech., No. 27, p. 49 (1949)Google Scholar
  67. Wells, C.H.: Fatigue and Microstructure, pp. 307–333. American Society for Metals, Metals Park, Ohio (1979)Google Scholar
  68. Wöhler, A.: Zeitschrift für Bauwesen 10 (1860). Cited in: Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials, 3rd edn., p. 463. Wiley, New York (1989)Google Scholar
  69. Wood, W.A.: Bull. Inst. Met. 3, 5–6 (1955)Google Scholar
  70. Wood, W.A.: Some basic studies of fatigue in metals. In: Fracture. Wiley, New York (1959)Google Scholar
  71. Wulpi, D.J.: How Components Fail. American Society for Metals, Metals Park, Ohio (1966)Google Scholar

Web Site

  1. Chapter 7—Notches and Their Effects, University of Toledo, p. 36. Accessed 02 Nov 2016

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations