Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 264))

Abstract

Fatigue fracture and its characteristic appearance. Various types of fluctuating stress cycle and its components. Standard fatigue test and SN diagram. Fatigue properties, and reason for existence of fatigue limit. Statistical nature of fatigue and estimation of anticipated fatigue life by means of standard statistical procedure. Fatigue crack initiation through persistent slip bands, such as slip-band extrusions and slip-band intrusions. Fatigue crack growth: Stage I and Stage II. Crack growth rate and ‘Paris’ law. Cumulative fatigue damage with definitions of overstressing, understressing and coaxing. Methods of presenting SN data, where mean stress is not zero. Design criteria for mean stress effects: Gerber relation, Goodman relation or Goodman diagram to prevent fatigue failure, and Soderberg relation to prevent yielding. Effects of stress concentration, specimen size, metallurgical variables, frequency of stress cycling, corrosive environment, low and high temperature on fatigue and thermal fatigue. Effects of specimen surface, such as its roughness, properties and residual stress on fatigue. Surface treatments beneficial to fatigue and metallurgical processes detrimental to fatigue. Cyclic strain-controlled fatigue, describing cyclic strain hardening and cyclic strain softening, and their dependency on material’s stacking fault energy. Low-cycle fatigue and Coffin–Manson relation. Total fatigue strain–life equation, and its plot approaching towards the plastic strain–life curve at large total strain amplitudes and the elastic strain–life curve at low total strain amplitudes. Creep–fatigue interaction, where suggested important design approaches are: cumulative damage rule, modification of Goodman law, frequency-modified fatigue relation and strain-range partitioning method. Increasing amplitude tests, such as step test and Prot test. Problems and solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, N.P., Forrest, P.G.: Inst. Mech. Eng. ASME International Conference on the Fatigue of Metals, p. 327 (1956)

    Google Scholar 

  • ASTM STP: Manual on Fatigue Testing. ASTM STP No. 91, American Society for Testing Materials, Philadelphia, Pa, pp. 6–65 (1949)

    Google Scholar 

  • ASTM STP: A Tentative Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data (Supplement to Manual on Fatigue Testing, STP No. 91). ASTM STP No. 91-A, American Society for Testing Materials, Philadelphia, Pa., pp. 4, 11–14 (1958)

    Google Scholar 

  • ASTM STP: A Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data (Supplement to Manual on Fatigue Testing, STP No. 91). ASTM STP No. 91-A, American Society for Testing and Materials, Philadelphia, Pa., p. 67 (1963)

    Google Scholar 

  • Bennett, J.A.: Proc. ASTM 46, 693–714 (1946)

    Google Scholar 

  • Borik, F., Chapman, R.D.: The effect of microstructure on the fatigue strength of a high carbon steel. Trans. ASM 53, 447–465 (1961)

    CAS  Google Scholar 

  • Coffin, L.F.: Proc. I. Mech. E. 188, 109 (1974)

    Article  Google Scholar 

  • Coffin Jr., L.F.: Metall. Trans. 2, 3105–3113 (1971)

    Article  CAS  Google Scholar 

  • Coffin Jr., L.F.: A study of cyclic thermal stresses in a ductile metal. Trans. ASME Am. Soc. Mech. Eng. 76, 931–950 (1954)

    CAS  Google Scholar 

  • Corten, H.T., Dimoff, T., Dolan, T.J.: An appraisal of the prot method of fatigue testing. Proc. ASTM 54, 875–894 (1954)

    CAS  Google Scholar 

  • Courtney, T.H.: Mechanical Behavior of Materials, p. 540. McGraw-Hill Publishing Company, New York (1990)

    Google Scholar 

  • Dieter, G.E., Horne, G.T., Mehl, R.F.: NACA Tech. Note 3211 (1954)

    Google Scholar 

  • Dieter, G.E., Mehl, R.F., Horne, G.T.: Trans. ASM 47, 423–439 (1955)

    Google Scholar 

  • Duquette, D.J.: Fatigue and Microstructure, pp. 335–363. American Society for Metals, Metals Park, Ohio (1979)

    Google Scholar 

  • Epremian, E., Nippes, E.F.: Trans. ASM 40, 870–896 (1948)

    Google Scholar 

  • Evans, U.R., Simnad, M.T.: Proc. R. Soc. London 188A, 372 (1947)

    Article  Google Scholar 

  • Feltner, C.E., Laird, C.: Cyclic stress-strain response of FCC metals and alloys I. Acta Metall. 15, 1621 (1967)

    Article  CAS  Google Scholar 

  • Findley, W.N.: An explanation of size effect in fatigue of metals. J. Mech. Eng. Sci. 14(6), 424–428 (1972)

    Article  Google Scholar 

  • Forman, R.G., Kearney, V.E., Engle, R.M.: Trans. ASME J. Basic Eng. 89, 459 (1967)

    Article  Google Scholar 

  • Forrest, P.G.: Fatigue of Metals. Addison-Wesley, Reading (1962)

    Google Scholar 

  • Gensamer, M., Pearsall, E.B., Pellini, W.S., Low, J.R.: Trans. ASM. 30, 983–1020 (1942)

    CAS  Google Scholar 

  • Goodman, J.: Mechanics Applied to Engineering. Longmans, Green & Co., Ltd., London (1899)

    Google Scholar 

  • Gough, H.J.: Proc. ASTM 33(2), 3–114 (1933)

    Google Scholar 

  • Gough, H.J., Sopwith, D.G.: Some further experiments on atmospheric action on fatigue. J. Inst. Met. 56, 55–89 (1935)

    Google Scholar 

  • Grosskreutz, J.C.: Fatigue mechanism in the sub-creep range. In: Manson, S.S. (ed.) Metal Fatigue Damage-Mechanism, Detection, Avoidance, and Repair, ASTM STP 495, p. 32. American Society for Testing and Materials, Philadelphia (1971)

    Google Scholar 

  • Haigh, B.P., Jones, B.: J. Inst. Metals 43, 271 (1930)

    Google Scholar 

  • Halford, G.R.: Cumulative fatigue damage modelling—crack nucleation and early growth. Int. J. Fatigue 19(1), S253–S260 (1997)

    Article  Google Scholar 

  • Harris, W.J.: The influence of decarburization on the fatigue behavior of steel bolts. S&T Memo 15/65, Ministry of Aviation, U. S. Govt. Report 473394, Aug 1965 (1965)

    Google Scholar 

  • Koo, G.P., Riddell, M.N., O’Toole, J.L.: Polym. Eng. Sci. 7, 182 (1967)

    Article  CAS  Google Scholar 

  • Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. Fatigue Crack Propagation, ASTM STP No. 415, American Society for Testing and Materials, Philadelphia, Pa., p. 136 (1967)

    Google Scholar 

  • Landgraf, R.W.: Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP No. 467, Philadelphia, Pa., p. 3 (1970)

    Google Scholar 

  • Levy, J.C., Kanitkar, S.L.: J. Iron Steel Inst. Lond. 197, 296–300 (1961)

    Google Scholar 

  • Levy, J.C., Sinclair, G.M.: Proc. ASTM 55, 866 (1955)

    CAS  Google Scholar 

  • Lipsitt, H.A., Wang, D.Y.: TMS AIME 221, 918 (1961)

    CAS  Google Scholar 

  • Lipsitt, H.A., Horne, G.T.: Proc. ASTM 57, 587–600 (1957)

    CAS  Google Scholar 

  • Lorenzo, F., Laird, C.: Mater. Sci. Eng. 62, 206–210 (1984)

    Article  Google Scholar 

  • Manson, S.S.: Behaviour of materials under conditions of thermal stress. NASA Technical Notes, National Advisory Committee for Aeronautics, Washington, D.C., p. 2933 (1954)

    Google Scholar 

  • Manson, S.S., Hirschberg, M.H.: Fatigue: An Interdisciplinary Approach, p. 133. Syracuse University Press, Syracuse (1964)

    Google Scholar 

  • Manson, S.S., Halford, G.R., Hirschberg, M.H.: Symposium on Design for Elevated Temperature Analysis, American Society of Mechanical Engineers, New York, pp. 12–23 (1971a)

    Google Scholar 

  • Manson, S.S., Halford, G.R., Hirschberg, M.H.: Creep-Fatigue Analysis by Strain-Range Partitioning. NASA TM X-67838. Technical Paper proposed for presentation at the First National Pressure Vessel and Piping Conference sponsored by the American Society of Mechanical Engineers San Francisco, 10–12 May 1971 (1971b)

    Google Scholar 

  • McCammon, R.D., Rosenberg, K.M.: A discussion on work hardening and fatigue. Proc. R. Soc. A242, 203 (1957)

    Article  Google Scholar 

  • McEvily, A.J., Staehle, R.W. (eds.): Corrosion Fatigue. Nat. Assoc. Corrosion Eng., Houston (1972)

    Google Scholar 

  • Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. 12(3), A159–A164 (1945)

    Google Scholar 

  • Morrow, J.D.: Cyclic plastic strain energy and fatigue of metals. Internal Friction, Damping and Cyclic Plasticity, ASTM STP No. 378, American Society for Testing and Materials, Philadelphia, Pa., p. 72 (1965)

    Google Scholar 

  • Neuber, H.: Theory of notch stress-principles for exact stress calculation. J. W. Edwards Brothers (Publisher) Inc., Ann Arbor, Michigan (1946)

    Google Scholar 

  • Palmgren, A.: Bertschrift des Vereines Ingenieure 58, 339 (1924)

    Google Scholar 

  • Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. Trans. ASME Series D J. Basic Eng. Am. Soc. Mech. Eng. 85, 528–534 (1963)

    CAS  Google Scholar 

  • Peterson, R.E.: Stress-Concentration Design Factors. Wiley, New York (1974)

    Google Scholar 

  • Phillips, C.E., Heywood, R.B.: Proc. Inst. Mech. En. (London) 165, 113–124 (1951)

    Article  Google Scholar 

  • Prot, E.M.: Fatigue testing under progressive loading; a new technique for testing materials. Rev. de Metall. XLV(12), 481 (1948)

    Article  Google Scholar 

  • Ransom, J.T.: Proc. ASTM 54, 847–848 (1954a)

    Google Scholar 

  • Ransom, J.T.: Trans. ASM. 46, 1254–1269 (1954b)

    Google Scholar 

  • Ransom, J.T., Mehl, R.F.: Proc. ASTM 52, 779–790 (1952)

    Google Scholar 

  • Richards, C.W.: Engineering Materials Science, p. 386. Wadsworth Publishing Company Inc., Belmont (1961)

    Google Scholar 

  • Riches, J.W., Sherby, O.D., Dorn, J.E.: Trans. ASM 44, 852–895 (1952)

    Google Scholar 

  • Ritchie, R.O.: Near threshold fatigue crack propagation in steels. Int. Met. Rev. 24, 205–230 (1979)

    Article  CAS  Google Scholar 

  • Sherrett, F.: The Influence of Shot-Peening and Similar Surface Treatments on the Fatigue Properties of Metals. Part I, S&T Memo 1/66, Ministry of Aviation, U. S. Govt. Report 487487, Feb 1966 (1966)

    Google Scholar 

  • Sinclair, G.M.: Proc. ASTM 52, 743–758 (1952)

    Google Scholar 

  • Sines, G., Waisman, J.L. (eds.): Metal Fatigue. McGraw-Hill Book Company Inc., New York (1959)

    Google Scholar 

  • Smith, R.W., Hirschberg, M.H., Manson, S.S.: Fatigue Behavior of Materials Under Strain Cycling in Low and Intermediate Life Range. NASA Technical Note D-1574, National Aeronautics and Space Administration, Washington, D.C., Apr 1963 (1963)

    Google Scholar 

  • Soderberg, C.R.: Factor of Safety and Working Stress. Trans. ASME 52(pt. APM-52-2), 13–28 (1930)

    Google Scholar 

  • Solomon, H.D., Coffin Jr., L.F.: Fatigue at Elevated Temperatures. ASTM STP No. 520, ASTM, Philadelphia, Pa., pp. 112–122 (1973)

    Google Scholar 

  • Tavernelli, J.F., Coffin Jr., L.F.: Trans. ASM 51, 438 (1959)

    Google Scholar 

  • Thompson, A.W., Backofen, W.A.: The effect of grain size on fatigue. Acta Metall. 19(7), 597–606 (1971)

    Article  CAS  Google Scholar 

  • Thompson, N., Wadsworth, N.J., Louat, N.: The origin of fatigue fracture in copper. Phil. Mag. 1, 113–126 (1956)

    Article  CAS  Google Scholar 

  • Weibull, W.: Statistical Representation of Fatigue Failures in Solids. Trans. Royal Inst. of Tech., No. 27, p. 49 (1949)

    Google Scholar 

  • Wells, C.H.: Fatigue and Microstructure, pp. 307–333. American Society for Metals, Metals Park, Ohio (1979)

    Google Scholar 

  • Wöhler, A.: Zeitschrift für Bauwesen 10 (1860). Cited in: Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials, 3rd edn., p. 463. Wiley, New York (1989)

    Google Scholar 

  • Wood, W.A.: Bull. Inst. Met. 3, 5–6 (1955)

    Google Scholar 

  • Wood, W.A.: Some basic studies of fatigue in metals. In: Fracture. Wiley, New York (1959)

    Google Scholar 

  • Wulpi, D.J.: How Components Fail. American Society for Metals, Metals Park, Ohio (1966)

    Google Scholar 

Web Site

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bhaduri .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhaduri, A. (2018). Fatigue. In: Mechanical Properties and Working of Metals and Alloys. Springer Series in Materials Science, vol 264. Springer, Singapore. https://doi.org/10.1007/978-981-10-7209-3_8

Download citation

Publish with us

Policies and ethics