Advertisement

Creep and Stress Rupture

  • Amit BhaduriEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 264)

Abstract

Creep phenomenon. Creep curve and its different stages. Strain–time relations to describe the basic shapes of creep curves mathematically. A general empirical equation for time laws of creep. Creep rate–stress–temperature relations, showing influence of stress and temperature on steady-state creep rate. Effect of grain size on steady-state creep rate. Activation energy for creep, its determination and relation with activation energy for self-diffusion. Creep deformation mechanisms: dislocation glide, dislocation creep or climb–glide creep, diffusional creep (Nabarro–Herring creep and Coble creep), and grain boundary sliding. Deformation mechanism map. Stress-rupture test and its difference with the creep test. Concept of equicohesive temperature (ECT) and deformation features at ECT. Fracture at elevated temperature. Creep cavitation: wedge-shaped cracks and round or elliptically shaped cavities. Presentation of engineering creep data, and prediction of creep strength and creep-rupture strength. Prediction of long-time properties by means of parameter methods, such as Larson–Miller parameter, Orr–Sherby–Dorn parameter, Manson–Haferd parameter, Goldhoff–Sherby parameter and limitations of parameter methods. Stress-relaxation and step-down creep test. Creep-resistant materials for high-temperature applications and rules to develop increased creep resistance at elevated temperatures. Creep under multiaxial stresses. Indentation creep and method to obtain creep curve using Rockwell hardness tester. Problems and solutions.

References

  1. Ashby, M.F.: A first report on deformation mechanism maps. Acta Metall. 20, 887–897 (1972)CrossRefGoogle Scholar
  2. ASTM E328: Standard Test Methods for Stress Relaxation for Materials and Structures. Designation: E328–13, ASTM International, West Conshohocken, PA. doi: https://doi.org/10.1520/E0328-13 (2013) (published in 2014)
  3. Atkins, A.G., Silverio, A., Tabor, D.: Indentation creep. J. Inst. Metals. 94, 369–378 (1966)Google Scholar
  4. Bhaduri, A.: Use of hardness tester for the measurement of different mechanical properties of metals. J. Mater. Ed. 29(3–4), 269–288 (2007)Google Scholar
  5. Bhakhri, V., Klassen, R.J.: Scripta Mater. 55, 395–398 (2006)CrossRefGoogle Scholar
  6. Chang, H.C., Grant, N.J.: Trans. AIME 197, 1175 (1953)Google Scholar
  7. Chang, H.C., Grant, N.J.: Trans. AIME 206, 544 (1956)Google Scholar
  8. Chen, C.W., Machlin, E.S.: Acta Metall. 4, 655 (1956)CrossRefGoogle Scholar
  9. Chen, C.W., Machlin, E.S.: Trans. AIME 209, 829 (1957)Google Scholar
  10. Coble, R.L.: J. Appl. Phys. 34, 1679 (1963)CrossRefGoogle Scholar
  11. Conrad, H.: The role of grain boundaries in creep and stress rupture. In: Dorn, J.E. (ed.) Mechanical Behavior of Materials at Elevated Temperatures, p. 264. McGraw-Hill Book Company Inc, New York (1961)Google Scholar
  12. Cottrell, A.H.: The time laws of creep. J. Mech. Phys. Solids 1, 53–63 (1952)CrossRefGoogle Scholar
  13. Courtney, T.H.: Mechanical Behaviour of Materials, International edn., p. 504. McGraw-Hill Publishing Company, New York (1990)Google Scholar
  14. da Andrade, E.N.C.: Proc. Roy. Soc. London, Ser. A, 84, 1 (1910)Google Scholar
  15. da Andrade, E.N.C.: The flow in metals under large constant stresses. Proc. Roy. Soc. London, Ser. A, 90, 329–342 (1914)Google Scholar
  16. da Andrade, E.N.C., Chalmers, B.: Proc. Roy. Soc. London, Ser. A, 138, 348 (1932)Google Scholar
  17. Decker, R.F., Freeman, J.W.: Trans. AIME 218, 277 (1961)Google Scholar
  18. Deming, H., Yungui, C., Yongbai, T., Hongmei, L., Gao, N.: Mater. Lett. 61, 1015–1019 (2007)CrossRefGoogle Scholar
  19. Dorn, J.E.: The Spectrum of Activation Energies for Creep, pp. 255–283. Creep and Recovery, American Society for Metals, Metals Park, Ohio (1957)Google Scholar
  20. Dorner, D., Röller, K., Skrotzki, B., Stöckhert, B., Eggeler, G.: Mater. Sci. Eng., A 357, 346–354 (2003)CrossRefGoogle Scholar
  21. Evans, A.G., Langdon, T.G.: Prog. Matls. Sc. 21, 171 (1976)CrossRefGoogle Scholar
  22. Feltham, P.: Phil. Mag. 6, 259 (1961)CrossRefGoogle Scholar
  23. Feltham, P., Meakin, J.D.: Acta Metall. 7, 614 (1959)CrossRefGoogle Scholar
  24. Feltham, P., Copley, G.J.: Phil. Mag. 5, 649 (1960)CrossRefGoogle Scholar
  25. Frost, H.J., Ashby, M.F.: Deformation-Mechanisms Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford (1982)Google Scholar
  26. Fujiwara, M., Otsuka, M.: Indentation creep of β-Sn and Sn-Pb eutectic alloy. Mater. Sci. Eng., A 319–321, 929–933 (2001)CrossRefGoogle Scholar
  27. Fullman, R.L., Carreker, R.P., Fisher, J.C.: Trans. AIME 197, 657–659 (1953)Google Scholar
  28. Garofalo, F.: ASTM Spec. Tech. Publ. No. 283, 82 (1960)Google Scholar
  29. Garofalo, F.: Trans. Metall. Soc. AIME 227, 351 (1963)Google Scholar
  30. Garofalo, F.: Fundamentals of Creep and Creep-Rupture in Metals. The Macmillan Company, New York (1965)Google Scholar
  31. Garofalo, F., Richmond, O., Domis, W.F., von Gemmingen, F.: Joint International Conference on Creep, The Institution of Mechanical Engineering, London, pp. 1–31 (1963)Google Scholar
  32. Garofalo, F., Domis, W., Gemmingen, F.: Trans. AIME 230, 1460 (1964)Google Scholar
  33. Gemmell, G., Grant, N.J.: Trans. AIME 209, 417 (1957)Google Scholar
  34. Gifkins, R.C.: Acta Metall. 4, 98 (1956)CrossRefGoogle Scholar
  35. Gifkins, R.C.: Fracture, p. 579. Wiley, New York (1959)Google Scholar
  36. Gill, R.F., Goldhoff, R.M.: Met. Eng. Q. 10, 30–39 (1970)Google Scholar
  37. Goldhoff, R.M.: Which method for extrapolating stress-rupture data? Mat. Des. Eng. 49(4), 93 (1959)Google Scholar
  38. Goldhoff, R., Hahn, G.: Correlation and extrapolation of creep-rupture data of several steels and superalloys using time-temperature parameters. In: ASM (ed.) Publication D-8-100; American Society for Metals, Cleveland, OH, USA, pp. 199–247 (1968). Cited in: Abdallah, Z., Gray, V., Whittaker, M., Perkins, K.: A critical analysis of the conventionally employed creep lifing methods. Materials 7, 3371–3398 (2014)Google Scholar
  39. Greenwood, J.N., Miller, D.R., Suiter, J.W.: Acta Metall. 2, 250 (1954)CrossRefGoogle Scholar
  40. Guiu, F., Pratt, P.L.: Phys. Stat. Sol. 6, 111–120 (1964)CrossRefGoogle Scholar
  41. Hanson, D.: Trans. AIME 133, 15 (1939)Google Scholar
  42. Harper, J.G., Dorn, J.E.: Viscous ceep of aluminum near its melting temperature. Acta Metall. 5, 654 (1957)CrossRefGoogle Scholar
  43. Harper, J.G., Shepard, L.A., Dorn, J.E.: Creep of aluminum under extremely small stresses. Acta Metall. 6, 509 (1958)CrossRefGoogle Scholar
  44. Herring, C.: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 (1950)CrossRefGoogle Scholar
  45. Hertzberg, R.W.: Deformation and fracture mechanics of engineering materials, 3rd edn., p. 160. Wiley, New York (1989)Google Scholar
  46. Honeycombe, R.W.K.: Creep in pure metals and alloys. In: The Plastic Deformation of Metals, 2nd edn., p. 386. Edward Arnold (Publishers) Ltd., London (1984)Google Scholar
  47. Inglis, C.E.: Trans. Inst. Nav. Archit., London 55, 219 (1913)Google Scholar
  48. Intrater, J., Machlin, E.S.: Acta Metall. 7, 140 (1959)CrossRefGoogle Scholar
  49. Jeffries, Z.: Trans. AIME 60, 474–576 (1919)Google Scholar
  50. Jensen, R.R., Tien, J.K.: In: Tien, J.K., Elliott, J.F. (eds.) Metallurgical Treatises, p. 529. AIME, Warrendale, PA (1981)Google Scholar
  51. Kuhn, H., Medlin, D. (eds.): Mechanical testing and evaluation. In: ASM Handbook, vol. 8, p. 399. ASM International, Materials Park, Ohio (2000)Google Scholar
  52. Landon, P.R., Lytton, J.L., Shepard, L.A., Dorn, J.E.: Trans. ASM 51, 900 (1959)Google Scholar
  53. Larson, F.R., Miller, J.: A Time-temperature relationship for rupture and creep stresses. Trans. ASME 74, 765–771 (1952)Google Scholar
  54. Laurent, P., Eudier, M.: Revue de Met. 47, 39 (1950)CrossRefGoogle Scholar
  55. LeMay, I.: Trans. ASME J. Eng. Mater. Tech. 101, 326–330 (1979)CrossRefGoogle Scholar
  56. Loveday, M.S., King, B.: Uniaxial testing apparatus and testpieces. In: Loveday, M.S., Day, M.F., Dyson, B.F. (eds.) High Temperature Mechanical Properties of Materials, pp. 128–157. NPL, London (1982)Google Scholar
  57. Lucas, B.N., Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601–610 (1999)CrossRefGoogle Scholar
  58. Mahmudi, R., Rezaee-Bazzaz, A.: Mater. Lett. 59, 1705–1708 (2005)CrossRefGoogle Scholar
  59. Manson, S.S., Haferd, A.M.: A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data. NACA TN 2890, Washington, DC, USA (1953)Google Scholar
  60. Manson, S.S., Ensign, C.R.: Trans. ASME J. Eng. Mater. Tech. 101, 317–325 (1979)CrossRefGoogle Scholar
  61. Mayo, M.J., Nix, W.D.: A micro-indentation study of superplasicity in Pb, Sn, and Sn-38%Pb. Acta Metall. 36(8), 2183–2192 (1988)CrossRefGoogle Scholar
  62. McKeown, J.: J. Inst. Met. 60, 201 (1937)Google Scholar
  63. McLean, D.: Grain Boundaries in Metals. Oxford University Press, London (1957a)Google Scholar
  64. McLean, D.: J. Inst. Met. 85, 468 (1957b)Google Scholar
  65. McLean, D.: Vacancies and Other Point Defects in Metals and Alloys, p. 159. Symposium, Institute of Metals, London (1958)Google Scholar
  66. McLean, D.: J. Australian Inst. Metals 8, 45 (1963)Google Scholar
  67. Monkman, F.C., Grant, N.J.: Proc. ASTM 56, 593–620 (1956)Google Scholar
  68. Moore, H.F., Moore, M.B.: Textbook of the Materials of Engineering, 8th edn., p. 363. McGraw-Hill, New York (1953)Google Scholar
  69. Mukherjee, A.K., Bird, J.E., Dorn, J.E.: Experimental correlations for high temperature creep. ASM Trans. Quart. 62, 155–179 (1969)Google Scholar
  70. Mullendore, A., Grant, N.J.: Trans. AIME 200, 973 (1954)Google Scholar
  71. Nabarro, F.R.N.: Report of a Conference on Strength of Solids, p. 75. Physical Society, London (1948)Google Scholar
  72. Nix, W.D.: Scripta Met. 17, 1–4 (1983)CrossRefGoogle Scholar
  73. Nix, W.D., Gibeling, J.C.: Mechanisms of time-dependent flow and fracture of metals. In: Raj, R. (ed.) Flow and Fracture at Elevated Temperature, pp. 1–63. American Society for Metals, Materials Park, Ohio (1985)Google Scholar
  74. Oliver, P.R., Girifalco, L.A.: Acta Metall. 10, 765 (1962)CrossRefGoogle Scholar
  75. Orr, R.L., Sherby, O.D., Dorn, J.E.: Correlation of rupture data for metals at elevated temperatures. Trans. ASM 46, 113–118 (1954)Google Scholar
  76. Parker, E.R.: Trans. ASM 50, 52–104 (1958)Google Scholar
  77. Petrasek, D.W., McDanels, D.L., Westfall, L.J., Stephans, J.R.: Metal Prog. 130(2), 27 (1986)Google Scholar
  78. Poisl, W.H., Oliver, W.C., Fabes, B.D.: The relation between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10(8), 2024–2032 (1995)CrossRefGoogle Scholar
  79. Pollock, H.M., Maugis, D., Barquins, M.: Characterization of sub-micrometer layers by indentation. In: Blau P.J., Lawn B.R. (eds.) Microindentation Techniques in Materials Science and Engineering, ASTM Spec. Tech. Publ. No. 889, pp. 47–71 (1986)Google Scholar
  80. Pranatis, A.L., Pound, G.M.: Trans. AIME 203, 664 (1955)Google Scholar
  81. Raj, R., Ashby, M.F.: Metall. Trans. 2, 1113 (1971)CrossRefGoogle Scholar
  82. Raman, V., Berriche, R.: An investigation of creep processes in tin and aluminum using depth-sensing indentation technique. J. Mater. Res. 7(3), 627–638 (1992)CrossRefGoogle Scholar
  83. Reed-Hill, R.E.: Creep. In: Physical Metallurgy Principles, 2nd edn., pp. 844–847. Litton Educational Publishing, Inc., New York (1973)Google Scholar
  84. Resnick, R., Seigle, L.: Trans. AIME 209, 87 (1957)Google Scholar
  85. Rhines, F.N., Wray, P.J.: Trans. ASM 54, 117 (1961)Google Scholar
  86. Rosenhain, W., Ewen, D.: J. Inst. Metals 10, 119 (1913)Google Scholar
  87. Roumina, R., Raeisinia, B., Mahmudi, R.: Scripta Mater. 51, 497–502 (2004)CrossRefGoogle Scholar
  88. Schoeck, G.: Theories of creep. In: Dorn, J.E. (ed.) Mechanical Behavior of Materials at Elevated Temperatures, p. 106. McGraw-Hill Book Company Inc, New York (1961)Google Scholar
  89. Sellars, C.M., Tegart, W.J.M.G.: Mem. Sci. Rev. Metall. 63, 731 (1966)Google Scholar
  90. Servi, J.S., Grant, N.J.: Trans. AIME 191(917), 909 (1951)Google Scholar
  91. Shahinian, P., Lane, J.R.: Trans. ASM 45, 177 (1953)Google Scholar
  92. Sherby, O.D.: Acta Metall. 10, 135–147 (1962)CrossRefGoogle Scholar
  93. Sherby, O.D., Burke, P.M.: Mechanical behavior of crystalline solids at elevated temperature. Prog. Mater Sci. 13(7), 325–390 (1967)Google Scholar
  94. Sherby, O.D., Orr, R.L., Dorn, J.E.: Trans. AIME 200, 71–80 (1954)Google Scholar
  95. Stoloff, N.S.: In: Kelly, A., Nicholson, R.B. (eds.) Strengthening Methods in Crystals, p. 193. Wiley, New York (1971)Google Scholar
  96. Stone, D.S., Yoder, K.B.: Division of the hardness of molybdenum into rate-dependent and rate-independent components. J. Mater. Res. 9(10), 2524–2533 (1994)CrossRefGoogle Scholar
  97. Stroh, A.N.: Proc. Roy. Soc., Ser. A, 223, 404 (1954)Google Scholar
  98. Sundar, R.S., Kutty, T.R.G., Sastry D.H.: Intermetallics 8, 427–437 (2000)CrossRefGoogle Scholar
  99. Thornton, P.H., Davies, R.G., Johnston, T.L.: Metall. Trans. 1, 207 (1970)Google Scholar
  100. Trouton, F.T., Rankine, A.O.: Phil. Mag. 538 (1904)Google Scholar
  101. Ver Snyder, F.L., Shank, M.E.: Mater. Sci. Eng. 6, 213–247 (1970)CrossRefGoogle Scholar
  102. Weertman, J.: J. Appl. Phys. 28, 362 (1957)CrossRefGoogle Scholar
  103. Weertman, J.: Trans. ASM 61, 681 (1968)Google Scholar
  104. Wyatt, O.H.: Proc. Phys. Soc., Ser. B, 66, 459 (1953)Google Scholar
  105. Zener, C.: Elasticity and Anelasticity of Metals. The University of Chicago Press, Chikago, Ill (1948)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations