Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 264))

  • 3368 Accesses

Abstract

Creep phenomenon. Creep curve and its different stages. Strain–time relations to describe the basic shapes of creep curves mathematically. A general empirical equation for time laws of creep. Creep rate–stress–temperature relations, showing influence of stress and temperature on steady-state creep rate. Effect of grain size on steady-state creep rate. Activation energy for creep, its determination and relation with activation energy for self-diffusion. Creep deformation mechanisms: dislocation glide, dislocation creep or climb–glide creep, diffusional creep (Nabarro–Herring creep and Coble creep), and grain boundary sliding. Deformation mechanism map. Stress-rupture test and its difference with the creep test. Concept of equicohesive temperature (ECT) and deformation features at ECT. Fracture at elevated temperature. Creep cavitation: wedge-shaped cracks and round or elliptically shaped cavities. Presentation of engineering creep data, and prediction of creep strength and creep-rupture strength. Prediction of long-time properties by means of parameter methods, such as Larson–Miller parameter, Orr–Sherby–Dorn parameter, Manson–Haferd parameter, Goldhoff–Sherby parameter and limitations of parameter methods. Stress-relaxation and step-down creep test. Creep-resistant materials for high-temperature applications and rules to develop increased creep resistance at elevated temperatures. Creep under multiaxial stresses. Indentation creep and method to obtain creep curve using Rockwell hardness tester. Problems and solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashby, M.F.: A first report on deformation mechanism maps. Acta Metall. 20, 887–897 (1972)

    Article  CAS  Google Scholar 

  • ASTM E328: Standard Test Methods for Stress Relaxation for Materials and Structures. Designation: E328–13, ASTM International, West Conshohocken, PA. doi:https://doi.org/10.1520/E0328-13 (2013) (published in 2014)

  • Atkins, A.G., Silverio, A., Tabor, D.: Indentation creep. J. Inst. Metals. 94, 369–378 (1966)

    CAS  Google Scholar 

  • Bhaduri, A.: Use of hardness tester for the measurement of different mechanical properties of metals. J. Mater. Ed. 29(3–4), 269–288 (2007)

    CAS  Google Scholar 

  • Bhakhri, V., Klassen, R.J.: Scripta Mater. 55, 395–398 (2006)

    Article  CAS  Google Scholar 

  • Chang, H.C., Grant, N.J.: Trans. AIME 197, 1175 (1953)

    Google Scholar 

  • Chang, H.C., Grant, N.J.: Trans. AIME 206, 544 (1956)

    Google Scholar 

  • Chen, C.W., Machlin, E.S.: Acta Metall. 4, 655 (1956)

    Article  Google Scholar 

  • Chen, C.W., Machlin, E.S.: Trans. AIME 209, 829 (1957)

    Google Scholar 

  • Coble, R.L.: J. Appl. Phys. 34, 1679 (1963)

    Article  Google Scholar 

  • Conrad, H.: The role of grain boundaries in creep and stress rupture. In: Dorn, J.E. (ed.) Mechanical Behavior of Materials at Elevated Temperatures, p. 264. McGraw-Hill Book Company Inc, New York (1961)

    Google Scholar 

  • Cottrell, A.H.: The time laws of creep. J. Mech. Phys. Solids 1, 53–63 (1952)

    Article  Google Scholar 

  • Courtney, T.H.: Mechanical Behaviour of Materials, International edn., p. 504. McGraw-Hill Publishing Company, New York (1990)

    Google Scholar 

  • da Andrade, E.N.C.: Proc. Roy. Soc. London, Ser. A, 84, 1 (1910)

    Google Scholar 

  • da Andrade, E.N.C.: The flow in metals under large constant stresses. Proc. Roy. Soc. London, Ser. A, 90, 329–342 (1914)

    Google Scholar 

  • da Andrade, E.N.C., Chalmers, B.: Proc. Roy. Soc. London, Ser. A, 138, 348 (1932)

    Google Scholar 

  • Decker, R.F., Freeman, J.W.: Trans. AIME 218, 277 (1961)

    Google Scholar 

  • Deming, H., Yungui, C., Yongbai, T., Hongmei, L., Gao, N.: Mater. Lett. 61, 1015–1019 (2007)

    Article  Google Scholar 

  • Dorn, J.E.: The Spectrum of Activation Energies for Creep, pp. 255–283. Creep and Recovery, American Society for Metals, Metals Park, Ohio (1957)

    Google Scholar 

  • Dorner, D., Röller, K., Skrotzki, B., Stöckhert, B., Eggeler, G.: Mater. Sci. Eng., A 357, 346–354 (2003)

    Article  Google Scholar 

  • Evans, A.G., Langdon, T.G.: Prog. Matls. Sc. 21, 171 (1976)

    Article  CAS  Google Scholar 

  • Feltham, P.: Phil. Mag. 6, 259 (1961)

    Article  CAS  Google Scholar 

  • Feltham, P., Meakin, J.D.: Acta Metall. 7, 614 (1959)

    Article  CAS  Google Scholar 

  • Feltham, P., Copley, G.J.: Phil. Mag. 5, 649 (1960)

    Article  CAS  Google Scholar 

  • Frost, H.J., Ashby, M.F.: Deformation-Mechanisms Maps: The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford (1982)

    Google Scholar 

  • Fujiwara, M., Otsuka, M.: Indentation creep of β-Sn and Sn-Pb eutectic alloy. Mater. Sci. Eng., A 319–321, 929–933 (2001)

    Article  Google Scholar 

  • Fullman, R.L., Carreker, R.P., Fisher, J.C.: Trans. AIME 197, 657–659 (1953)

    Google Scholar 

  • Garofalo, F.: ASTM Spec. Tech. Publ. No. 283, 82 (1960)

    Google Scholar 

  • Garofalo, F.: Trans. Metall. Soc. AIME 227, 351 (1963)

    Google Scholar 

  • Garofalo, F.: Fundamentals of Creep and Creep-Rupture in Metals. The Macmillan Company, New York (1965)

    Google Scholar 

  • Garofalo, F., Richmond, O., Domis, W.F., von Gemmingen, F.: Joint International Conference on Creep, The Institution of Mechanical Engineering, London, pp. 1–31 (1963)

    Google Scholar 

  • Garofalo, F., Domis, W., Gemmingen, F.: Trans. AIME 230, 1460 (1964)

    CAS  Google Scholar 

  • Gemmell, G., Grant, N.J.: Trans. AIME 209, 417 (1957)

    Google Scholar 

  • Gifkins, R.C.: Acta Metall. 4, 98 (1956)

    Article  Google Scholar 

  • Gifkins, R.C.: Fracture, p. 579. Wiley, New York (1959)

    Google Scholar 

  • Gill, R.F., Goldhoff, R.M.: Met. Eng. Q. 10, 30–39 (1970)

    CAS  Google Scholar 

  • Goldhoff, R.M.: Which method for extrapolating stress-rupture data? Mat. Des. Eng. 49(4), 93 (1959)

    Google Scholar 

  • Goldhoff, R., Hahn, G.: Correlation and extrapolation of creep-rupture data of several steels and superalloys using time-temperature parameters. In: ASM (ed.) Publication D-8-100; American Society for Metals, Cleveland, OH, USA, pp. 199–247 (1968). Cited in: Abdallah, Z., Gray, V., Whittaker, M., Perkins, K.: A critical analysis of the conventionally employed creep lifing methods. Materials 7, 3371–3398 (2014)

    Google Scholar 

  • Greenwood, J.N., Miller, D.R., Suiter, J.W.: Acta Metall. 2, 250 (1954)

    Article  CAS  Google Scholar 

  • Guiu, F., Pratt, P.L.: Phys. Stat. Sol. 6, 111–120 (1964)

    Article  Google Scholar 

  • Hanson, D.: Trans. AIME 133, 15 (1939)

    Google Scholar 

  • Harper, J.G., Dorn, J.E.: Viscous ceep of aluminum near its melting temperature. Acta Metall. 5, 654 (1957)

    Article  CAS  Google Scholar 

  • Harper, J.G., Shepard, L.A., Dorn, J.E.: Creep of aluminum under extremely small stresses. Acta Metall. 6, 509 (1958)

    Article  CAS  Google Scholar 

  • Herring, C.: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 (1950)

    Article  Google Scholar 

  • Hertzberg, R.W.: Deformation and fracture mechanics of engineering materials, 3rd edn., p. 160. Wiley, New York (1989)

    Google Scholar 

  • Honeycombe, R.W.K.: Creep in pure metals and alloys. In: The Plastic Deformation of Metals, 2nd edn., p. 386. Edward Arnold (Publishers) Ltd., London (1984)

    Google Scholar 

  • Inglis, C.E.: Trans. Inst. Nav. Archit., London 55, 219 (1913)

    Google Scholar 

  • Intrater, J., Machlin, E.S.: Acta Metall. 7, 140 (1959)

    Article  CAS  Google Scholar 

  • Jeffries, Z.: Trans. AIME 60, 474–576 (1919)

    Google Scholar 

  • Jensen, R.R., Tien, J.K.: In: Tien, J.K., Elliott, J.F. (eds.) Metallurgical Treatises, p. 529. AIME, Warrendale, PA (1981)

    Google Scholar 

  • Kuhn, H., Medlin, D. (eds.): Mechanical testing and evaluation. In: ASM Handbook, vol. 8, p. 399. ASM International, Materials Park, Ohio (2000)

    Google Scholar 

  • Landon, P.R., Lytton, J.L., Shepard, L.A., Dorn, J.E.: Trans. ASM 51, 900 (1959)

    Google Scholar 

  • Larson, F.R., Miller, J.: A Time-temperature relationship for rupture and creep stresses. Trans. ASME 74, 765–771 (1952)

    Google Scholar 

  • Laurent, P., Eudier, M.: Revue de Met. 47, 39 (1950)

    Article  CAS  Google Scholar 

  • LeMay, I.: Trans. ASME J. Eng. Mater. Tech. 101, 326–330 (1979)

    Article  CAS  Google Scholar 

  • Loveday, M.S., King, B.: Uniaxial testing apparatus and testpieces. In: Loveday, M.S., Day, M.F., Dyson, B.F. (eds.) High Temperature Mechanical Properties of Materials, pp. 128–157. NPL, London (1982)

    Google Scholar 

  • Lucas, B.N., Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601–610 (1999)

    Article  Google Scholar 

  • Mahmudi, R., Rezaee-Bazzaz, A.: Mater. Lett. 59, 1705–1708 (2005)

    Article  CAS  Google Scholar 

  • Manson, S.S., Haferd, A.M.: A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data. NACA TN 2890, Washington, DC, USA (1953)

    Google Scholar 

  • Manson, S.S., Ensign, C.R.: Trans. ASME J. Eng. Mater. Tech. 101, 317–325 (1979)

    Article  CAS  Google Scholar 

  • Mayo, M.J., Nix, W.D.: A micro-indentation study of superplasicity in Pb, Sn, and Sn-38%Pb. Acta Metall. 36(8), 2183–2192 (1988)

    Article  CAS  Google Scholar 

  • McKeown, J.: J. Inst. Met. 60, 201 (1937)

    Google Scholar 

  • McLean, D.: Grain Boundaries in Metals. Oxford University Press, London (1957a)

    Google Scholar 

  • McLean, D.: J. Inst. Met. 85, 468 (1957b)

    CAS  Google Scholar 

  • McLean, D.: Vacancies and Other Point Defects in Metals and Alloys, p. 159. Symposium, Institute of Metals, London (1958)

    Google Scholar 

  • McLean, D.: J. Australian Inst. Metals 8, 45 (1963)

    Google Scholar 

  • Monkman, F.C., Grant, N.J.: Proc. ASTM 56, 593–620 (1956)

    Google Scholar 

  • Moore, H.F., Moore, M.B.: Textbook of the Materials of Engineering, 8th edn., p. 363. McGraw-Hill, New York (1953)

    Google Scholar 

  • Mukherjee, A.K., Bird, J.E., Dorn, J.E.: Experimental correlations for high temperature creep. ASM Trans. Quart. 62, 155–179 (1969)

    CAS  Google Scholar 

  • Mullendore, A., Grant, N.J.: Trans. AIME 200, 973 (1954)

    Google Scholar 

  • Nabarro, F.R.N.: Report of a Conference on Strength of Solids, p. 75. Physical Society, London (1948)

    Google Scholar 

  • Nix, W.D.: Scripta Met. 17, 1–4 (1983)

    Article  Google Scholar 

  • Nix, W.D., Gibeling, J.C.: Mechanisms of time-dependent flow and fracture of metals. In: Raj, R. (ed.) Flow and Fracture at Elevated Temperature, pp. 1–63. American Society for Metals, Materials Park, Ohio (1985)

    Google Scholar 

  • Oliver, P.R., Girifalco, L.A.: Acta Metall. 10, 765 (1962)

    Article  CAS  Google Scholar 

  • Orr, R.L., Sherby, O.D., Dorn, J.E.: Correlation of rupture data for metals at elevated temperatures. Trans. ASM 46, 113–118 (1954)

    CAS  Google Scholar 

  • Parker, E.R.: Trans. ASM 50, 52–104 (1958)

    Google Scholar 

  • Petrasek, D.W., McDanels, D.L., Westfall, L.J., Stephans, J.R.: Metal Prog. 130(2), 27 (1986)

    Google Scholar 

  • Poisl, W.H., Oliver, W.C., Fabes, B.D.: The relation between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10(8), 2024–2032 (1995)

    Article  CAS  Google Scholar 

  • Pollock, H.M., Maugis, D., Barquins, M.: Characterization of sub-micrometer layers by indentation. In: Blau P.J., Lawn B.R. (eds.) Microindentation Techniques in Materials Science and Engineering, ASTM Spec. Tech. Publ. No. 889, pp. 47–71 (1986)

    Google Scholar 

  • Pranatis, A.L., Pound, G.M.: Trans. AIME 203, 664 (1955)

    Google Scholar 

  • Raj, R., Ashby, M.F.: Metall. Trans. 2, 1113 (1971)

    Article  Google Scholar 

  • Raman, V., Berriche, R.: An investigation of creep processes in tin and aluminum using depth-sensing indentation technique. J. Mater. Res. 7(3), 627–638 (1992)

    Article  CAS  Google Scholar 

  • Reed-Hill, R.E.: Creep. In: Physical Metallurgy Principles, 2nd edn., pp. 844–847. Litton Educational Publishing, Inc., New York (1973)

    Google Scholar 

  • Resnick, R., Seigle, L.: Trans. AIME 209, 87 (1957)

    Google Scholar 

  • Rhines, F.N., Wray, P.J.: Trans. ASM 54, 117 (1961)

    Google Scholar 

  • Rosenhain, W., Ewen, D.: J. Inst. Metals 10, 119 (1913)

    Google Scholar 

  • Roumina, R., Raeisinia, B., Mahmudi, R.: Scripta Mater. 51, 497–502 (2004)

    Article  CAS  Google Scholar 

  • Schoeck, G.: Theories of creep. In: Dorn, J.E. (ed.) Mechanical Behavior of Materials at Elevated Temperatures, p. 106. McGraw-Hill Book Company Inc, New York (1961)

    Google Scholar 

  • Sellars, C.M., Tegart, W.J.M.G.: Mem. Sci. Rev. Metall. 63, 731 (1966)

    Google Scholar 

  • Servi, J.S., Grant, N.J.: Trans. AIME 191(917), 909 (1951)

    Google Scholar 

  • Shahinian, P., Lane, J.R.: Trans. ASM 45, 177 (1953)

    Google Scholar 

  • Sherby, O.D.: Acta Metall. 10, 135–147 (1962)

    Article  CAS  Google Scholar 

  • Sherby, O.D., Burke, P.M.: Mechanical behavior of crystalline solids at elevated temperature. Prog. Mater Sci. 13(7), 325–390 (1967)

    Google Scholar 

  • Sherby, O.D., Orr, R.L., Dorn, J.E.: Trans. AIME 200, 71–80 (1954)

    Google Scholar 

  • Stoloff, N.S.: In: Kelly, A., Nicholson, R.B. (eds.) Strengthening Methods in Crystals, p. 193. Wiley, New York (1971)

    Google Scholar 

  • Stone, D.S., Yoder, K.B.: Division of the hardness of molybdenum into rate-dependent and rate-independent components. J. Mater. Res. 9(10), 2524–2533 (1994)

    Article  CAS  Google Scholar 

  • Stroh, A.N.: Proc. Roy. Soc., Ser. A, 223, 404 (1954)

    Google Scholar 

  • Sundar, R.S., Kutty, T.R.G., Sastry D.H.: Intermetallics 8, 427–437 (2000)

    Article  CAS  Google Scholar 

  • Thornton, P.H., Davies, R.G., Johnston, T.L.: Metall. Trans. 1, 207 (1970)

    CAS  Google Scholar 

  • Trouton, F.T., Rankine, A.O.: Phil. Mag. 538 (1904)

    Google Scholar 

  • Ver Snyder, F.L., Shank, M.E.: Mater. Sci. Eng. 6, 213–247 (1970)

    Article  CAS  Google Scholar 

  • Weertman, J.: J. Appl. Phys. 28, 362 (1957)

    Article  CAS  Google Scholar 

  • Weertman, J.: Trans. ASM 61, 681 (1968)

    CAS  Google Scholar 

  • Wyatt, O.H.: Proc. Phys. Soc., Ser. B, 66, 459 (1953)

    Google Scholar 

  • Zener, C.: Elasticity and Anelasticity of Metals. The University of Chicago Press, Chikago, Ill (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bhaduri .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhaduri, A. (2018). Creep and Stress Rupture. In: Mechanical Properties and Working of Metals and Alloys. Springer Series in Materials Science, vol 264. Springer, Singapore. https://doi.org/10.1007/978-981-10-7209-3_7

Download citation

Publish with us

Policies and ethics