Advertisement

Impact Loading

  • Amit BhaduriEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 264)

Abstract

Behaviour of materials under impact loads. Factors responsible for brittle cleavage type of fracture of normally ductile metals and alloys. Single-blow pendulum impact tests with notched bar, such as Charpy and Izod tests. Geometry of Charpy and Izod standard specimens with different types of notch and placement of specimens for tests in Charpy and Izod impact testers. Calculation of energy relations and correction for energy losses in impact test. Impact properties and transition temperature curves, and various criteria to define ductile–brittle transition temperature. Metallurgical factors affecting impact properties. Metallurgical embrittlement, such as tempered martensite embrittlement and temper embrittlement. Instrumented Charpy impact test. Additional large-scale fracture test methods, such as explosion-crack-starter test, drop weight test, Robertson crack-arrest test and dynamic tear test. Fracture analysis diagram and design philosophy using it. Problems and solutions.

References

  1. ASTM E208: Standard test method for conducting drop-weight test to determine nil-ductility transition temperature of ferritic steels. Designation: E208–06 (reapproved 2012), ASTM International, West Conshohocken, Pa (2012). doi: https://doi.org/10.1520/E0208-06R12
  2. Augland, B.: Brit. Weld. J. 9(7), 434 (1962)Google Scholar
  3. Balajiva, K., Cook, R.M., Worn, D.K.: Nat. Lond. 178, 433 (1956)CrossRefGoogle Scholar
  4. Bandyopadhyay, N., McMahon Jr., C.J.: Met. Trans. 14A, 1313 (1983)CrossRefGoogle Scholar
  5. Banerji, S.K., Feng, H.C., McMahon Jr., C.J.: Metall. Trans. 9A, 237 (1978)CrossRefGoogle Scholar
  6. Batson, R. G., Hyde, J. H. (1922). Mechanical Testing, vol. 1: Testing of Materials of Construction, p. 413. Dutton, New York (Chapman & Hall, London)Google Scholar
  7. Bishop, T.A., Markworth, A.J., Rosenfield, A.R.: Metall. Trans. 14A, 687–693 (1983)CrossRefGoogle Scholar
  8. Briant, C.L., Banerji, S.K.: Int. Metall. Rev. 23, 164 (1978)CrossRefGoogle Scholar
  9. Bucher, J.H., Grozier, J.D.: Met. Eng. Q., 5(1) (1965)Google Scholar
  10. Capus, J.M.: The mechanism of Temper Brittleness. In: Temper Embrittlement in Steel, STP No. 407, pp. 3–19. ASTM, Philadelphia (1968)Google Scholar
  11. Carr, F.L., Goldman, M., Jaffee, L.D., Buffum, D.C.: Isothermal temper embrittlement of SAE 3140 steel. Trans. TMS-AIME 197, 998 (1953)Google Scholar
  12. Driscoll, D.E.: The Charpy impact machine and procedure for inspection and testing Charpy V-notch impact specimens. ASTM Bull. 191, 60–64 (1953)Google Scholar
  13. Drucker, D.C.: Fracture of Solids, Chap. 1. Interscience Publishers, Inc., New York (1963)Google Scholar
  14. Eldin, A.S., Collins, S.C.: Fracture and yield stress of 1020 steel at low temperatures. J. App. Phys. 22, 1296–1297 (1951)CrossRefGoogle Scholar
  15. Fahey, N.H.: Impact Testing of Metals. ASTM Spec. Tech. Publ. No. 466, pp. 76–92 (1970)Google Scholar
  16. Garcia, C.I., Ratz, G.A., Burke, M.G., DeArdo, A.J.: J. Met. 37(9), 22 (1985)Google Scholar
  17. Gross, J.: ASTM Spec. Tech. Publ. No. 466, p. 21 (1970)Google Scholar
  18. Grossmann, M.A., Bain, E.C.: Principles of Heat Treatment, 5th edn, pp. 189–196. American Society for Metals, Metals Park, Ohio (1964)Google Scholar
  19. Hodjson, T.J., Boyd, G.M.: Trans. Inst. Nav. Archit. Lond. 100, 141 (1958)Google Scholar
  20. Hollomon, J.H.: Temper brittleness. Trans. ASM 36, 473–540 (1946)Google Scholar
  21. Kahn, N.A., Imbembo, E.A., Ginsberg, F.: Effect of variations in notch acuity on the behaviour of steel in the Charpy notched-bar tests. Proc. ASTM 50, 619–648 (1950)Google Scholar
  22. Kameda, J., McMahon Jr., C.J.: Metall. Trans. 11A, 91 (1980)CrossRefGoogle Scholar
  23. King, J.E., Smith, R.F., Knott, J.F.: Toughness variations during tempering of a plain carbon martensitic steel. In: Fracture 1977, vol. 2, Proceedings of the Fourth International Conference on Fracture, Waterloo, Canada (1977)Google Scholar
  24. King, B.L., Wigmore, G.: Metall. Trans. A 7A, 1761 (1976)CrossRefGoogle Scholar
  25. Lange, E.A., Loss, F.J.: Impact testing of metals. ASTM Spec. Tech. Publ. No. 466, pp. 241–258 (1970)Google Scholar
  26. Low Jr., J.R., Stein, D.F., Turkalo, A.M., LaForce, R.P.: Trans. Met. Soc. AIME 242, 14 (1968)Google Scholar
  27. Ludwik, P.Z.: Ver. Deut. Ing. 71, 1532–1538 (1927)Google Scholar
  28. Marcus, H.L., Hackett Jr., H., Palmberg, P.W.: ASTM Spec. Tech. Publ. No. 499, p. 90 (1972)Google Scholar
  29. Marcus, H.L., Palmberg, P.W.: Trans. Met. Soc. AIME 245, 1665 (1969)Google Scholar
  30. Materkowski, J.P., Krauss, G.: Tempered martensite embrittlement in SAE 4340 steel. Met. Trans. A 10A, 1643–1651 (1979)CrossRefGoogle Scholar
  31. McMahon Jr., C.J.: Strength of grain boundaries in iron-base alloys. Grain Boundaries in Engineering Materials, pp. 525–552. Claitors Publishing Division, Baton Rouge (1975)Google Scholar
  32. McMahon Jr., C.J., Vitek, V., Kameda, J.: Developments in Fracture Mechanics, vol. 2, p. 193. In: Chell, G.G. (ed.). Applied Science, New Jersy (1981)Google Scholar
  33. McMahon Jr., C.J.: Temper brittleness—an interpretive review. In: Temper Embrittlement in Steel, STP No. 407, pp. 127–167. ASTM, Philadelphia, Pa (1968)Google Scholar
  34. McMahon Jr., C.J., Vitek, V.: Acta Metall. 27, 507 (1979)CrossRefGoogle Scholar
  35. McMahon Jr., C.J., Furubayashi, E., Ohtani, H., Feng, H.C.: A study of grain boundaries during temper embrittlement of a low carbon Ni–Cr steel doped with antimony. Acta Metall. 24, 695–704 (1976)CrossRefGoogle Scholar
  36. McMahon Jr., C.J., Cianelli, A.K., Feng, H.C.: The Influence of Mo on P-induced tempered embrittlement in Ni–Cr steel. Met. Trans. A 8A, 1055–1057 (1977)CrossRefGoogle Scholar
  37. McNicol, R.C.: Weld. Res. Suppl. 385 (1965)Google Scholar
  38. Mulford, R.A., McMahon Jr., C.J., Pope, D.P., Feng, H.C.: Metall. Trans. A 7A, 1183 (1976)CrossRefGoogle Scholar
  39. Olefjord, I.: Temper embrittlement. Inter. Met. Rev. 23(1), 149–163 (1978)CrossRefGoogle Scholar
  40. Orowan, E.: Trans. Inst. Eng. Schipbuild. Scot. 89, 165 (1945)Google Scholar
  41. Owen, W.S., Whitmore, D.H., Cohen, M., Averbach, B.L.: Weld. J. 36, 503s–551ls (1957)Google Scholar
  42. Palmberg, P.W., Marcus, H.L.: Trans. ASM 62, 1016 (1969)Google Scholar
  43. Parker, E.R.: Brittle Behaviour of Engineering Structures, p. 38. Wiley, New York (1957)Google Scholar
  44. Pellini, W.S.: NRL Report No. 1957, U.S. Naval Research Laboratory, 23 Sept 1969 (1969)Google Scholar
  45. Pellini, W.S.: Weld. J. 50, 915–1095, 147s–162s (1971)Google Scholar
  46. Pellini, W.S., Puzak, P.P.: NRL Report No. 5920, U.S. Naval Research Laboratory, 15 Mar 1963 (1963)Google Scholar
  47. Puzak, P.P., Lange, E.A.: NRL Report No. 6851, Naval Research Laboratory, 13 Feb 1969 (1969)Google Scholar
  48. Puzak, P.P., Pellini, W.S.: NRL Report No. 5831, Naval Research Laboratory, 21 Aug 1962 (1962)Google Scholar
  49. Puzak, P.P., Shuster, M.E., Pellini, W.S.: Weld. J. 33, 481s (1954)Google Scholar
  50. Rees, W.P., Hopkins, B.E., Tipler, H.R.: J. Iron Steel Inst. Lond. 172, 403–409 (1952)Google Scholar
  51. Rinebolt, J.A., Harris Jr., W.J.: Trans. ASM 43, 1175–1214 (1951)Google Scholar
  52. Robertson, T.S.: Engineering 172, 445–448 (1951)Google Scholar
  53. Schupmann, R.G.: A study of tempered martensite embrittlement in 4230 type steels. M.S. thesis, Colorado School of Mines, Golden (1978)Google Scholar
  54. Shank, M.E.: A critical survey of brittle failure in carbon plate steel structures other than ships. ASTM Spec. Tech. Publ. No. 158, pp. 45–110 (1954)Google Scholar
  55. Stein, D.F., Joshi, A., LaForce, R.P.: Trans. ASM 62, 776 (1969)Google Scholar
  56. Steven, W., Balajiva, K.: J. Iron Steel Inst. 193, 141 (1959)Google Scholar
  57. Tetelman, A.S., McEvily Jr., A.J.: Fracture of Structural Materials, Chap. 10. Wiley, New York (1967)Google Scholar
  58. Turner, C.E.: ASTM Spec. Tech. Publ. No. 466, p. 93 (1970)Google Scholar
  59. Union Carbide Corporation: Micoalloying 75, distributed by American Society for Metals, Metals Park, Ohio (1977)Google Scholar
  60. Williams, M.L.: Analysis of brittle behavior in ship plates. In: Symposium on Effect of Temperature on the Brittle Behavior of Metals with Particular Reference to Low Temperature, ASTM Spec. Tech. Publ. No. 158, pp. 11–44 (1954)Google Scholar
  61. Woodfine, B.C.: Temper brittleness: a critical review of the literature. J. Iron Steel Inst. 173, 229–240 (1953)Google Scholar
  62. Wullaert, R.A.: ASTM Spec. Tech. Publ. No. 466, p. 418 (1970)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations