Advertisement

Fundamentals of Mechanical Working

  • Amit BhaduriEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 264)

Abstract

Classification of mechanical forming processes and their main objectives. Hot working and cold working, and their comparison. Cold-work-anneal cycle and temperature limits for hot working. Warm working, its purpose and advantages. Temperature change during working of deforming metal, depending on its ideal plastic deformation, friction at its interface with tools or dies, and heat transfer between them. Effects of strain rate in working processes. Effect of varying pressure and strain rate on allowable hot working temperature range. Friction: Coulomb’s law of sliding friction and factors affecting Coulomb’s coefficient of sliding friction (COF). Shear friction factor and sticking friction. Maximum value of COF under sticking condition according to Von Mises’ and Tresca yielding criteria. Difference and advantages of shear friction factor model over Coulomb’s model of friction. Evaluations of friction factor and COF by ring-compression test. Adverse as well as beneficial effects of friction on mechanical working. Material pickup on tools. Functions and characteristics of a lubricant. Lubrication mechanism: hydrodynamic or full-fluid or thick-film lubrication, boundary lubrication, mixed-film lubrication, solid lubricants and melting solids. Mechanics of working process: slab method, uniform-deformation energy method, slip-line field theory, upper- and lower-bound solutions and finite element method. Slip-line field theory: slip lines, Hencky’s slip-line equations, stresses and slip lines at the boundaries of a plastic body, simple state of stress, Hencky’s first theorem, numerical method of solution, application of slip-line field to static system and steady motion. Upper-bound technique: derivation of its equation, its solutions for indentation of a semi-infinite slab and for compression. Deformation-zone geometry in terms of reduction in area of work-piece for different deformation processes. Anisotropy of mechanical properties: crystallographic texture and mechanical fibering. Problems and solutions.

References

  1. Al-Samarai, R., Haftirman, A., Ahmad, K.R., Al-Douri, Y.: Int. J. Sci. Res. Pub. 2(3), 1–4 (2012)Google Scholar
  2. Avitzur, B.: Metal Forming: Process and Analysis. McGraw-Hill Book Company, New York (1968)Google Scholar
  3. Backofen, W.A.: Deformation Processing, p. 135. Addison-Wesley Publishing Company, Inc., Reading, Mass (1972)Google Scholar
  4. Bishop, J.F.W.: On the effect of friction and compression indentation between flat dies. J. Mech. Phys. Solids 6, 132–144 (1958)CrossRefGoogle Scholar
  5. Bonnet, C., Valiorgue, F., Rech, J., Claudin, C.: Int. J. Mach. Tool Manuf. 48, 1211–1223 (2008)CrossRefGoogle Scholar
  6. Bowden, F.P.: Adhesion and friction. Endeavour 16(61), 5–18 (1957)Google Scholar
  7. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, Part I, 2nd edn. Oxford University Press, London (1954 and 1964)Google Scholar
  8. Chen, M., Kato, K., Adachi, K.: Tribol. Int. 35, 129–135 (2002)CrossRefGoogle Scholar
  9. Chowdhury, M.A., Khalil, M.K., Nuruzzaman, D.M., Rahaman, M.L.: Int. J. Mech. Mechatronics Eng. IJMME-IJENS 11(01), 45–49 (2011)Google Scholar
  10. Chowdhury, M.A., Nuruzzaman, D.M., Hannan, M.A.: Int. J. Eng. Res. Appl. (IJERA) 2(2), 1425–1431 (2012)Google Scholar
  11. Clark, R.W., Fuller, J.H., Gleber, J.A.: Lubrication. Chem. Eng. 63(6), 243–246 (1956)Google Scholar
  12. Dieter, G.E.: Mechanical Metallurgy, 3rd edn. McGraw-Hill Book Company (UK) Limited, London (1988)Google Scholar
  13. Douglas, J.R., Altan, T.: ASME, Paper No. 73-WA/Prod-13 (1973)Google Scholar
  14. Earles, S.W.E., Powell, D.G.: Proc. IME. 181, 171–179 (1966/67)Google Scholar
  15. Ettles, C.M.M.C.: J. Tribol. ASME 108, 98–104 (1986)Google Scholar
  16. Fukui, S., Ohi, T., Kudo, H., Takita, I., Seino, J.: Some aspects of friction in metal-strip drawing. Int. J. Mech. Sci. 4, 297–314 (1962)CrossRefGoogle Scholar
  17. Goddard, J., Wilman, H.: Wear 5, 114–135 (1962)CrossRefGoogle Scholar
  18. Green, A.P.: Friction between unlubricated metals. Proc. Roy. Soc. London, A 228, 191–204 (1955)CrossRefGoogle Scholar
  19. Grzesik, W., Nieslony, P.: Wear 256, 108–117 (2004)CrossRefGoogle Scholar
  20. Harris, J.N.: Mechanical Working of Metals Theory and Practice pp. 72, 76. Pergamon Press, Oxford (1983)CrossRefGoogle Scholar
  21. Heubner, K.H., Thornton, E.A.: The Finite Element Method for Engineers. Wiley, New York (1982)Google Scholar
  22. Hill, R.: The Mathematical Theory of Plasticity p. 255. Oxford University Press Inc., New York (1950)Google Scholar
  23. Hirst, S., Ursell, D.H.: Some limiting factors in extrusion. Metal Treat. Drop Forging 25, 409 (1958)Google Scholar
  24. Hoffman, O., Sachs, G.: Introduction to the Theory of Plasticity for Engineers. McGraw-Hill Book Company, New York (1953)Google Scholar
  25. Johnson, R.H.: Superplast. Met. Rev. 15, 115–134 (1970)CrossRefGoogle Scholar
  26. Johnson, W., Kudo, H.: The Mechanics of Metal Extrusion. Manchester University Press, Manchester (1962)Google Scholar
  27. Johnson, W., Mellor, P.B.: Engineering Plasticity. Van Nostrand Reinhold Company, New York (1973)Google Scholar
  28. Kadhim, M.J., Earles, S.W.E.: Proc. IME, 181, 157–162 (1966/67)Google Scholar
  29. Klinkova, O., Rech, J., Drapier, S., Bergheau, J.M.: Tribol. Int. 44, 2050–2058 (2011)CrossRefGoogle Scholar
  30. Kobayashi, S., Shah, S.N. In: Burke, J.J., Weiss V. (eds.) Advances in Deformation Processing pp. 51–98, Plenum Press, New York (1978)CrossRefGoogle Scholar
  31. Kragelsky, I.V., Dobychi, M.N., Kombalov, V.S.: Friction and Wear: Calculation Methods. Pergamon Press, Oxford (1982)Google Scholar
  32. Kudo, H.: An analysis of plastic compression deformation of a Lamella between rough plates by the energy method. Proc. 5th Jap. Nat. Cong. Appl. Mech. 5, 75–78 (1955)Google Scholar
  33. Kunogi, M.: On the plastic deformation of the hollow cylinder under axial load. J. Sci. Res. Inst. Japan 30(2), 63–92 (1954)Google Scholar
  34. Lee, C.H., Altan, T.: Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders. Trans. ASME, J. Eng. Ind 94, 775–782 (1972). Cited from: Mandic, V., Stefanovic, M.: Friction studies utilizing the ring—compression test—part I. Tribol. Ind. 25, (1&2): 33–40 (2003)CrossRefGoogle Scholar
  35. Lee, C.H., Kobayashi, S.: Trans. ASME Ser. B. J. Eng. Ind. 93, 445–454 (1971)CrossRefGoogle Scholar
  36. Likhtman, V.I., Shchukin, E.D., Rebinder, P.A.: Fiziko–Khimicheskaya Mekhanika Metallov (Physical and Chemical Mechanics of Metals), USSR Academy of Sciences Publication (1962)Google Scholar
  37. Male, A.T., Cockcroft, M.G.: A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J. Inst. Met. 93, 38–46 (1964–1965). Cited from: Mandic, V., Stefanovic, M.: Friction studies utilizing the ring—compression test—part I. Tribol. Ind. 25(1&2), 33–40 (2003)Google Scholar
  38. Male, A.T., dePierre, V., Sand, G.: ASLE Trans. 16, 177–184 (1973)CrossRefGoogle Scholar
  39. Pager, W., Hodge Jr., P.G.: Theory of perfectly plastic solids. Chapman & Hall Ltd, London (1951)Google Scholar
  40. Pearsall, G.W., Backofen, W.A.: Trans. ASME, Ser. D: J. Basic Eng. 85B, 68–75 (1963)CrossRefGoogle Scholar
  41. Pinkus, O., Sternlicht, B.: Theory of Hydrodynamic Lubrication. McGraw-Hill Book Company, New York (1961)Google Scholar
  42. Rech, J., Claudin, C., Eramo, E.: Tribol. Int. 42, 738–744 (2009)CrossRefGoogle Scholar
  43. Rogers, J.A., Rowe, G.W.: Reinforced wax as a phase-change lubricant in metal-working. J. Inst. Met. 92(3), 95 (1963)Google Scholar
  44. Segerlind, L.J.: Applied Finite Element Analysis. Wiley, New York (1976)Google Scholar
  45. Sejournet, J., Delcroix, J.: Glass lubrication in extrusion of steel. Lubric. Eng. 11, 389–396 (1955)Google Scholar
  46. Shaw, M.C.: Int. J. Mach. Tool Des. Res. 22(3), 215–226 (1982)CrossRefGoogle Scholar
  47. Smith, C.O.: The Science of Engineering Materials. Prentice-Hall Inc., Englewood Cliffs, NJ (1969)Google Scholar
  48. Spijker, P., Anciaux, G., Molinari, J.: Tribol. Int. 59, 222–229 (2012)CrossRefGoogle Scholar
  49. Takahashi, H., Alexander, J.M.: J. Inst. Met. 90, 72–79 (1961–62)Google Scholar
  50. Van Rooyan, G.T., Backofen, W.A.: A study of interface friction in plastic compression. Int. J. Mech. Sci. 1, 1–27 (1960)CrossRefGoogle Scholar
  51. Wallace, J.F.: Stretch-forming control by phase change lubrication. Metal Ind London 97, 415–418 (1960)Google Scholar
  52. Wells, C., Mehl, R.F.: Trans. ASM 41(753), 755 (1949)Google Scholar
  53. Williams, K., Griffen, E.: Proc. IME 178, 24–26 (1964)Google Scholar
  54. Yasuhisa, : Wear 254, 965–973 (2003)CrossRefGoogle Scholar
  55. Zienkiewicz, O.: The Finite Element Method, 3rd edn. McGraw-Hill, New York (1977)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations