Performance Analysis of Statistical-Based Pixel Purity Index Algorithms for Endmember Extraction in Hyperspectral Imagery

  • S. Graceline Jasmine
  • V. Pattabiraman
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 645)


This paper presents two endmember extraction (EE) algorithms which are based on single skewer and multiple skewers, respectively, to identify the pixel purity index (PPI) in hyperspectral images. In the existing PPI algorithm, the skewers were generated randomly which can generate dissimilar results in each of the iterations, and therefore, it may lead to the increase of false alarm probability. This issue has been resolved in these EE algorithms by generating skewers using statistical parameters of the hyperspectral dataset. This reduces the false alarm probability as well as the computational complexity of the conventional PPI algorithm. This work has been experimented using cuprite dataset. Experimental results prove the effectiveness of these EE algorithms in better identification of pure pixels.


Endmember Hyperspectral image Pixel purity index Skewer Pure pixel 


  1. 1.
    Goetz, F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for Earth remote sensing. Science 228, 1147–1153 (1985)CrossRefGoogle Scholar
  2. 2.
    Wu, X., Huang, B., Plaza, A., Li, Y., Wu, C.: Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs. IEEE Geosci. Remote Sens. Lett. 3, 955–959 (2014)Google Scholar
  3. 3.
    Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/ infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998)CrossRefGoogle Scholar
  4. 4.
    Valero, S., Salembier, P., Chanussot, J.: Hyperspectral image representation and processing with binary partition trees. IEEE Trans. Image Process. 22, 1430–1443 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Keshava, N.: A survey of spectral unmixing algorithms. Lincoln Lab. J. 14, 55–78 (2003)Google Scholar
  6. 6.
    Boardman, J.M., Kruse, F.A., Green, R.O.: Mapping target signatures via partial unmixing of AVIRIS data. In: Proceedings of Summaries JPL Airborne Earth Science Workshop, Pasadena, CA, vol. 1, 23–26 (1995)Google Scholar
  7. 7.
    Winter, M.E.: N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: Proceedings of SPIE Conference Imaging Spectrometry, pp. 266–275 (1999)Google Scholar
  8. 8.
    Nascimento, J., Bioucas-Dias, J.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43, 898–910 (2005)CrossRefGoogle Scholar
  9. 9.
    Liu, J.M., Zhang, J.S.: A new maximum simplex volume method based on householder transformation for endmember extraction. IEEE Trans. Geosci. Remote Sens. 50, 104–118 (2012)CrossRefGoogle Scholar
  10. 10.
    Li, J., Bioucas-Dias, J.: Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data. In: Proceedings of IEEE Geoscience Remote Sensing Symposium (IGARSS’08), vol. 4, pp. 2369–2371 (2008)Google Scholar
  11. 11.
    Bioucas-Dias, J.: A variable splitting augmented Lagrangian approach to linear spectral unmixing. In: 1st IEEE WHISPERS (2009)Google Scholar
  12. 12.
    Ifarraguerri, A., Chang, C.-I.: Multispectral and hyperspectral image analysis with convex cones. IEEE Trans. Geosci. Remote Sens. 37, 756–770 (1999)CrossRefGoogle Scholar
  13. 13.
    Graceline Jasmine, S., Pattabiraman, V.: Hyperspectral image analysis using end member extraction algorithm. Int. J. Pure Appl. Math. 101, 809–829 (2015)Google Scholar
  14. 14.
    Plaza, A., Benediktsson, J.A., Boardman, J., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, J., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, 110–122 (2009)CrossRefGoogle Scholar
  15. 15.
    Chang, C.-I., Wu, C.-C., Liu, W., Ouyang, Y.-C.: A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 44 (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Computing Science and EngineeringVIT University - Chennai CampusChennaiIndia

Personalised recommendations