Skip to main content

Mechanical Testing of Elevated Temperature PMC, Metallic, and CMC Coupons

  • Conference paper
  • First Online:
Advances in Structural Integrity

Abstract

A cornerstone of structural integrity is the proper use and characterization of structural materials. Improper materials characterization or use of a material system outside its designed use range (intentionally or unintentionally) can have perilous results for structural integrity. As gas turbine engines and other applications drive toward higher operating temperatures for structural elements, the materials characterization and design allowable generation activities become increasingly difficult. We discuss elevated temperature testing requirements and the development of testing solutions aligned with these requirements. Mechanical testing systems for elevated temperature testing for polymeric matrix composites (PMCs), metallics, and ceramic matrix composites (CMCs) were developed. Test capability for temperatures as high as 1500 °C was demonstrated. The development of these systems will be briefly reviewed with particular focus on design aspects, system performance, and general usability of a system targeting testing of cylindrical metallic specimens at temperatures up to 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. Schwarzkopf, Evaluating tradeoffs in high-temperature testing. Adv. Mater. Process. 174, 16–18 (2016)

    Google Scholar 

  2. Z. Fawaz, Quality control and testing methods for advanced composites materials in aerospace engineering, in Advanced Composite Materials for Aerospace Engineering: Processing, Properties, and Applications, ed. by S. Rana, R. Fangueiro (Woodhead Publishing/Elsevier Science, 2016), pp. 429–452

    Google Scholar 

  3. U. Burger, L. Rochat, Aspects of damage tolerance and fatigue of CFRP structural components. SAE Int. J. Aerosp. 8(2), 292–302 (2015)

    Article  Google Scholar 

  4. A.L. Gyekenyesi, M.G. Castelli, J.R. Ellis, C.S. Burke, A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21. NASA Technical Memorandum 106927 (1995)

    Google Scholar 

  5. J. Mills-Brown, K. Potter, S. Foster, T. Batho, The development of a tensile testing rig for composite laminates. Compos. A 52, 99–105 (2013)

    Article  Google Scholar 

  6. D.C. Larsen, S.L. Stuchly, The mechanical evaluation of ceramic fiber composites, in Fiber Reinforced Ceramic Composites, ed. by K.S. Mazdiyasni (Noyes Park Ridge, NJ, 1990), pp 182–221

    Google Scholar 

  7. D.M. Dawson, R.F. Preston, A. Purser, Fabrication and materials evaluation of high performance aligned ceramic fiber-reinforced, glass-matrix composite, ed. by W. Smothers. 11th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings, vol. 8, Issue 7/8, (Wiley, Hoboken, NJ, USA, 1987)

    Google Scholar 

  8. K. Staerk, High temperature axial strain-controlled LCF\TMF fatigue testing of flat-sheet specimens, in Fatigue and Durability Assessment of Materials, Components and Structures, ed. by M.R. Bache, P.A. Blackmore, J. Draper, J.H. Edwards, P. Roberts, J.R. Yates (Sheffield, UK, 2003), pp. 389–397

    Google Scholar 

  9. P.B.S. Bailey, A.D. Lafferty, Specimen gripping effects in composites fatigue testing—Concerns from initial investigation, sXPRESS. Polym. Lett. 9(5), 480–488 (2015)

    Article  Google Scholar 

  10. R.J. Greene, G.S. Hartman, A.H. Rosenberger, Detection of small cracks in nickel-based superalloys at elevated temperature, in 2004 SEM X International Congress & Exposition on Experimental & Applied Mechanics (2004)

    Google Scholar 

  11. G.A. Hartman, L.P. Zawada, S.M. Russ, Techniques for elevated temperature testing of advanced ceramic composite materials, in Fifth Annual Hostile Environments and High Temperature Measurements Conference. Society for Experimental Mechanics, Costa Mesa, CA (1988)

    Google Scholar 

  12. J.Z. Gyekenyesi, J.H. Hemann, Optical strain measuring techniques for high temperature tensile testing. NASA Contractor Report 179637 (1987)

    Google Scholar 

  13. J.Z. Gyekenyesi, P.A. Bartolotta, An evaluation of strain measuring devices for ceramic composites. NASA Technical Memorandum 105337 (1991)

    Google Scholar 

  14. L.P. Zawada, Longitudinal and transthickness tensile behavior of several oxide/oxide composites. Cerm. Eng. Sci. Proc. 19(3), 327–339 (1998)

    Google Scholar 

Download references

Acknowledgements

The continuing assistance of the US Air Force Research Laboratory’s Materials and Manufacturing Directorate under Cooperative Research and Development Agreements 13-210-RX-01 and 13-210-RX-02 is kindly acknowledged. Particular thanks are extended to Drs. Andrew Rosenberger and Jonathan Spowart. Additional valuable support was provided by Mr. Phillip Blosser and Ms. Jennifer Pierce of the University of Dayton Research Institute, as well as Mr. Larry Zawada of Universal Technologies Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Schwarzkopf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwarzkopf, E.A., Shepard, M.J. (2018). Mechanical Testing of Elevated Temperature PMC, Metallic, and CMC Coupons. In: Prakash, R., Jayaram, V., Saxena, A. (eds) Advances in Structural Integrity. Springer, Singapore. https://doi.org/10.1007/978-981-10-7197-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7197-3_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7196-6

  • Online ISBN: 978-981-10-7197-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics