Effect of Silica Nanoparticles on the Fatigue Life of a Glass Fiber Reinforced Epoxy Composite Under an Aircraft Spectrum Load Sequence

  • N. JagannathanEmail author
  • K. Sakthivel
  • Ramesh Bojja
  • C. M. Manjunatha
Conference paper


Two types of glass fiber reinforced plastic (GFRP) composites viz., (i) GFRP employing unmodified LY556 epoxy matrix (GFRP-neat), and (ii) GFRP incorporated with 10 wt% of well-dispersed silica nanoparticles in the LY556 epoxy matrix (GFRP-nano), were tested to determine their fatigue life under mini-FALSTAFF, a standard fighter aircraft spectrum load sequence. Spectrum fatigue tests were conducted on standard test specimens in a 50 kN servo-hydraulic test machine with sinusoidal waveform at an average frequency of 3 Hz. Tests were conducted on both types of GFRP composites with various reference stresses to determine the fatigue life expressed as number of blocks required for failure. The fatigue life of GFRP-nano composite was observed to be about four times higher than that of GFRP-neat composite over the entire range of reference stresses investigated. For a given number of applied load cycles, both the matrix crack density and stiffness reduction rates were observed to be lower in GFRP-nano composite when compared to that of GFRP-neat composite. Presence of silica nanoparticles in the epoxy matrix of GFRP appear to reduce matrix cracking and also retard crack growth rate in the composite leading to enhanced fatigue life. Further, using constant fatigue life diagrams of these materials, the spectrum fatigue life under mini-FALSTAFF load sequence was predicted. Good correlation was observed between the predicted and experimental fatigue life for both types of composites.


Glass fiber Polymer composite Spectrum fatigue Silica nanoparticle 



The authors from CSIR-NAL wish to thank Mr. Shyam Chetty, Director and Dr. Satish Chandra, Head, Structural Technologies Division, CSIR-National Aerospace Laboratories, Bangalore, India, for their constant support and encouragement during this work. The laminates were fabricated in the department of Mechanical Engineering, Imperial College, London, UK. Thanks to Prof. A.J. Kinloch and Dr. A.C. Taylor for their assistance and encouragement during this work. The authors also wish to thank the technical support staff members of the Department of Mechanical Engineering and the Composites Centre of the Aeronautics Department, Imperial College London, and the Materials Evaluation Lab, STTD, NAL, Bangalore, for their assistance in the experimental work.


  1. 1.
    E.T. Thostenson, C. Li, T.W. Chou, Comp. Sci. Tech. 65, 491 (2005)CrossRefGoogle Scholar
  2. 2.
    F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, J. Comp. Mater. 40, 1511 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Ma, M.S. Mo, X.S. Du, P. Rosso, K. Friedrich, H.C. Kuan, Polymer 49, 3510 (2008)CrossRefGoogle Scholar
  4. 4.
    C.M. Manjunatha, A.C. Taylor, A.J. Kinloch, S. Sprenger, J. Mater. Sci. 44(16), 4487 (2009)CrossRefGoogle Scholar
  5. 5.
    N. Chisholm, H. Mahfuz, V.K. Rangari, A. Ashfaq, S. Jeelani, Compos. Struct. 67, 115 (2005)CrossRefGoogle Scholar
  6. 6.
    S. Zhao, L.S. Schadler, H. Hillborg, T. Auletta, Compos. Sci. Tech. 68, 2976 (2008)CrossRefGoogle Scholar
  7. 7.
    B. Wetzel, P. Rosso, F. Haupert, K. Friedrich, Eng. Fract. Mech. 73, 2375 (2006)Google Scholar
  8. 8.
    F.H. Gojny, M.H.G. Wichmann, B. Fiedler, W. Bauhofer, K. Schulte, Compos. A: Appl. Sci. Manufac. 36, 1525 (2005)CrossRefGoogle Scholar
  9. 9.
    Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 35, 357 (2010)CrossRefGoogle Scholar
  10. 10.
    C.M. Manjunatha, A.C. Taylor, A.J. Kinloch, S. Sprenger, J. Mater. Sci. 44(1), 342 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Zhou, V. Rangari, H. Mahfuz, S. Jeelani, P.K. Mallick, Mater. Sci. Eng. A 402, 109 (2005)CrossRefGoogle Scholar
  12. 12.
    S.U. Khan, A. Munir, R. Hussain, J.K. Kim, Compos. Sci. Tech. 70, 2077 (2010)Google Scholar
  13. 13.
    Y. Zhou, M. Hosur, S. Jeelani, P. Mallick, J. Mater. Sci. 47, 5002 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Cho, J.Y. Chen, I.M. Daniel, Script. Mater. 56, 685 (2007)CrossRefGoogle Scholar
  15. 15.
    A.M. Rafiee, F. Yavari, J. Rafiee, N. Koratkar, J. Nano. Part Res. 13, 733 (2011)Google Scholar
  16. 16.
    C.M. Manjunatha, A.C. Taylor, A.J. Kinloch, S. Sprenger, Compos. Sci. Tech. 70, 193 (2010)Google Scholar
  17. 17.
    G.T. Wang, H.Y. Liu, N. Saintier, Y.W. Mai, Eng. Fail. Analy. 16, 2635 (2009)CrossRefGoogle Scholar
  18. 18.
    N. Yu, Z.H. Zhang, S.Y. He, Mater. Sci. Eng. A 494, 380 (2008)CrossRefGoogle Scholar
  19. 19.
    D.R. Bortz, C. Merino, I. Martin-Gullon, Compos. Sci. Tech. 71, 31 (2011)CrossRefGoogle Scholar
  20. 20.
    C. Grimmer, C. Dharan, J. Mater. Sci. 43, 4487 (2008)CrossRefGoogle Scholar
  21. 21.
    D.R. Bortz, C. Merino, I. Martin-Gullon, Compos. Sci. Tech. 72, 446 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Böger, J. Sumfleth, H. Hedemann, K. Schulte, Compos. Part A: Appl. Sci. Manufact. 41, 1419 (2010)CrossRefGoogle Scholar
  23. 23.
    T. Adachi, M. Osaki, W. Araki, S.C. Kwon, Acta Mater. 56, 2101 (2008)CrossRefGoogle Scholar
  24. 24.
    Y.L. Liang, R.A. Pearson, Polymer 51, 4880 (2010)CrossRefGoogle Scholar
  25. 25.
    A.J. Kinloch, R.D. Mohammed, A.C. Taylor, C. Eger, S. Sprenger, D. Egan, J. Mater. Sci. 40, 5083 (2005)CrossRefGoogle Scholar
  26. 26.
    A.J. Kinloch, R.D. Mohammed, A.C. Taylor, S. Sprenger, D.J. Egan, J. Mater. Sci. 41, 5043 (2006)CrossRefGoogle Scholar
  27. 27.
    A.J. Kinloch, K. Masania, A.C. Taylor, S. Sprenger, D. Egan, J. Mater. Sci. 43, 1151 (2008)CrossRefGoogle Scholar
  28. 28.
    C.M. Manjunatha, S. Sprenger, A.C. Taylor, A.J. Kinloch, J. Compos. Mater. 44, 2095 (2010)CrossRefGoogle Scholar
  29. 29.
    L. Böger, J. Sumfleth, H. Hedemann K. Schulte, Compos. Part A: Appl. Sci. Manufact. 41, 1419 (2010)Google Scholar
  30. 30.
    J. Li, P.S. Wong, J.K. Kim, Mater. Sci. Eng. A 483, 660 (2008)CrossRefGoogle Scholar
  31. 31.
    C.M. Manjunatha, R. Bojja, N. Jagannathan , Mater. Perf. Char. 3(1), 327 (2014)Google Scholar
  32. 32.
    G.M. Van Dijk, J.B. de Jonge, National Aerospace Laboratory NLR, Netherlands, NLR MP 75017 U (1975)Google Scholar
  33. 33.
    P. Heuler, H. Klatschke, Int. J. Fat. 27, 974 (2005)CrossRefGoogle Scholar
  34. 34.
    N.L. Post, S.W. Case, J.J. Lesko, Int. J. Fat. 30, 2064 (2008)CrossRefGoogle Scholar
  35. 35.
    T.P. Philippidis, A.P. Vassilopoulos, Compos. Part A: Appl. Sci. Manufact. 35, 657 (2004)CrossRefGoogle Scholar
  36. 36.
    C.M. Manjunatha, Ramesh Bojja, N. Jagannathan, A.J. Kinloch, A.C. Taylor, Int. J. Fat. 54, 25 (2013)Google Scholar
  37. 37.
    R. Talreja, Proc. Roy. Soc. London. A. Math. Phys. Sci. 378, 461 (1981)Google Scholar
  38. 38.
    J.S. Tate, A.D. Kelkar, Compos. B 39, 548 (2008)CrossRefGoogle Scholar
  39. 39.
    K.L. Reifsnider, R. Jamison, Int. J Fat. 4, 187 (1982)CrossRefGoogle Scholar
  40. 40.
    S.W. Case, K.L. Reifsnider, in Fatigue of Composite Materials, eds. I. Milne, R.O. Ritchie, B. Karihaloo. Comprehensive Structural Integrity, vol. 4 Cyclic loading and fatigue, (Elsevier Science, Amsterdam, 2003)Google Scholar
  41. 41.
    A. Gagel, B. Fiedler, K. Schulte, Compos. Sci. Tech 66, 657 (2006)CrossRefGoogle Scholar
  42. 42.
    A. Gagel, D. Lange, K. Schulte, Compos. A 37, 222 (2006)CrossRefGoogle Scholar
  43. 43.
    H.Y. Liu, G. Wang, Y.W. Mai, Compos. Sci. Tech. 72(13), 1530 (2012)Google Scholar
  44. 44.
    C.M. Manjunatha, N. Jagannathan, K. Padmalatha, A.C. Taylor, A.J. Kinloch, Int. J. Nanosci. 10, 1095 (2011)CrossRefGoogle Scholar
  45. 45.
    Standard Practices for Cycle Counting in Fatigue Analysis, ASTM E1049, Annual book of ASTM Standards, American Society for Testing and Materials, PA, vol. 15.03, (2003)Google Scholar
  46. 46.
    A.P. Vassilopoulos, B.D. Manshadi, T. Keller, Int. J. Fat. 32, 659 (2010)CrossRefGoogle Scholar
  47. 47.
    M.A. Miner, J. Appl. Mech. 12A, 159 (1945)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • N. Jagannathan
    • 1
    Email author
  • K. Sakthivel
    • 1
  • Ramesh Bojja
    • 1
  • C. M. Manjunatha
    • 1
  1. 1.Structural Technologies Division, Fatigue and Structural Integrity GroupCSIR-National Aerospace LaboratoriesBengaluruIndia

Personalised recommendations