Analysis of the Performance of the Cantilever-Type Piezoelectric Generator Based on Finite Element Modeling

  • A. N. Soloviev
  • I. A. ParinovEmail author
  • A. V. Cherpakov
  • V. A. Chebanenko
  • E. V. Rozhkov
  • L. V. Duong
Conference paper


The paper analyzes the influence of the characteristics of proof mass on the output characteristics of cantilever-type piezoelectric generators (PEGs) with bimorph elements by using finite element modeling (FEM) in the ANSYS software. This investigation studies the effects of the geometric dimensions of proof mass and the place of its attachment. Symmetrical and asymmetrical cases of mass placement are also studied. The problems of the evaluation of influence of PEG’s electromechanical characteristics on output parameters of the generators are considered. The results of the computations of output voltage and power of the PEGs are present.


Finite element method (FEM) Piezoelectric generator (PEG) Bimorph Cantilever Proof mass Damped oscillations Harmonics Frequency Voltage Power 



This study has been performed at partial support of Russian Foundation for Basic Research (grants Nos. 16-08-00740, 14-08-00546) and proposals Nos. 213.01-11/2014-25, 0110-11/2017-20 of the Russian Ministry of Education and Sciences (basic part). I.A. Parinov acknowledges financial support of the Russian Ministry of Education and Sciences in the framework of “Organization of Scientific Research” Government Assignment.


  1. 1.
    S.R. Anton, H. Sodano, A review of power harvesting using piezoelectric materials Smart Mater. Struct. 16, К1–К21 (2007)Google Scholar
  2. 2.
    S. Priya, Advances in power harvesting using low profile piezoelectric transducers. J. Electroceramics. 19, 167–184 (2007)CrossRefGoogle Scholar
  3. 3.
    K.A. Cook-Cherault, N. Thamb, A.M. Sastry, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)CrossRefGoogle Scholar
  4. 4.
    H.S. Kim, J.H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Caliò, U.B. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. de Petris, C.M. Oddo, Piezoelectric energy harvesting solutions. Sensors 14(3), 4755–4790 (2014)CrossRefGoogle Scholar
  6. 6.
    V.A. Chebanenko, V.A. Akopyan, I.A. Parinov, Chapter 10. Piezoelectric generators and energy harvesters: modern state of the art, pp. 243–277. in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications, ed. by I.A. Parinov (Nova Science Publishers, New York, 2015), 283 pp.Google Scholar
  7. 7.
    V.A. Akopyan, Y.N. Zakharov, I.A. Parinov, E.V. Rozhkov, S.N. Shevtsov, V.A. Chebanenko, Chapter 4. Optimization of output characteristics of the bimorph power harvesters, pp. 111–131. in Nano- and Piezoelectric Technologies, Materials and Devices, ed. by I.A. Parinov (Nova Science Publishers, New York, 2013), 261 pp.Google Scholar
  8. 8.
    V.A. Akopyan, I.A. Parinov, Y.N. Zakharov, V.A. Chebanenko, E.V. Rozhkov, Chapter 24. Advanced investigations of energy efficiency of piezoelectric generators, pp. 417–436. in Advanced Materials—Studies and Applications, eds. by I.A. Parinov, S.H. Chang, S. Theerakulpisut (Nova Science Publishers, New York, 2015), 527 pp.Google Scholar
  9. 9.
    A. Erturk, P.A. Tarazaga, J.R. Farmer, D.J. Inman, Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J. Vib. Acoust. 131(1), 011010 (2009)CrossRefGoogle Scholar
  10. 10.
    N.G. Elvin, A.A. Elvin, A general equivalent circuit model for piezoelectric generators. J. Intell. Mater. Syst. Struct. 20(1), 3–9 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Liao, H.A. Sodano, Optimal parameters and power characteristics of piezoelectric energy harvesters with an RC circuit. Smart Mater. Struct. 18(4), 045011 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Nechibvute, A. Chawanda, P. Luhanga, Finite element modeling of a piezoelectric composite beam and comparative performance study of piezoelectric materials for voltage generation. ISRN Materials Science (2012)Google Scholar
  13. 13.
    Y. Zhang, W. He, Multi-mode piezoelectric energy harvesters for wireless sensor network based structural health monitoring. in The 15th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring 2008, pp. 69340Z–69340ZGoogle Scholar
  14. 14.
    A.N. Soloviev, I.A. Parinov, L.V. Duong, C.C. Yang, S.H. Chang, J.C.Y. Lee, Chapter 24. Analysis of finite element models for piezoelectric devices of energy harvesting, pp. 335–352. in Physics and Mechanics of New Materials and their Applications, eds. by I.A. Parinov, S.H. Chang (Nova Science Publishers, New York, 2013), p. 444Google Scholar
  15. 15.
    S. Shevtsov, V. Akopyan, E. Rozhkov, V. Chebanenko, C.C. Yang, C.Y. Lee, C.X. Jenny Kuo, Chapter 24. Optimization of the electric power harvesting system based on the piezoelectric stack transducer. Advanced materials—manufacturing, pp. 639–650. in Physics, Mechanics and Applications, eds. by I.A. Parinov, S.H. Chang, V.Y. Topolov (Springer, Heidelberg, 2016), pp. 175, 707Google Scholar
  16. 16.
    A.V. Belokon, A.V. Nasedkin, A.N. Soloviev, New schemes of the finite element dynamic analysis of piezoelectric devices. Appl. Math. Mech. 66(3), 491–501 (2002)Google Scholar
  17. 17.
    A.V. Nasedkin, The wave field in anisotropic elastic media with complicated properties and methods of finite element dynamic analysis. DrSc thesis, Rostov State University Press, Rostov-on-Don. 2001, 271 p. (In Russian)Google Scholar
  18. 18.
    V.A. Krasilnikov, V.V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow,1984), 403 pp. (In Russian)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • A. N. Soloviev
    • 1
    • 2
    • 3
  • I. A. Parinov
    • 1
    Email author
  • A. V. Cherpakov
    • 1
    • 2
  • V. A. Chebanenko
    • 1
    • 3
  • E. V. Rozhkov
    • 1
  • L. V. Duong
    • 4
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Don State Technical UniversityRostov-on-DonRussia
  3. 3.Southern Scientific Center of RASRostov-on-DonRussia
  4. 4.Department of Mechanical EngineeringLe Quy Don Technical UniversityHanoiVietnam

Personalised recommendations