Advertisement

Prediction of Mode II Delamination Onset Life Under Spectrum Fatigue Loads Using Equivalent Strain Energy Release Rate Concept

  • A. R. AnilchandraEmail author
  • M. Seshagirachari
  • Ramesh Bojja
  • N. Jagannathan
  • C. M. Manjunatha
Conference paper
  • 736 Downloads

Abstract

End notched flexure (ENF) test specimens of unidirectional IMA/M21 carbon fiber composite (CFC) were fabricated using standard autoclave process. A Teflon insert was used to simulate a delamination at the midplane. Three-point bend setup tests were conducted at an average frequency of 2 Hz using a 25 kN servo-hydraulic test machine in room temperature conditions. Constant amplitude fatigue tests were done at three different stress ratios, viz. R = 0.0, 0.5, and −1.0 to construct the standard G-N onset diagram, similar to SN curve in its usefulness. N onset was identified as 5% change in initial compliance value. Using an equivalent energy release rate parameter, G eq, all the curves were collapsed into a single curve in the form of Basquin’s equation. The equation was subsequently used in predicting the delamination onset-of-growth life under a standard mini-FALSTAFF spectrum load sequence. A fairly good correlation was found between the predicted and experimental mode II onset-of-growth behavior.

Keywords

Composite Delamination Spectrum load Onset-of-growth Compliance 

Nomenclature

R

Stress ratio

Nonset

Number of constant amplitude (CA) fatigue cycles for onset-of-growth

Gmax

Maximum strain energy release rate (SERR)

Gmin

Minimum SERR

Geq

Equivalent SERR

GIIC

Critical mode II SERR

\(G_{\text{eq}}^{\prime }\)

Basquin's coeffecient

ΔG

Range SERR

γ

Best fit parameter

Nb

Number of spectrum fatigue load blocks

D

Damage fraction

Notes

Acknowledgements

Authors wish to thank the AR&DB for financially supporting the project. The support and encouragement provided by Mr. Shyam Chetty, Director, Dr. Satish Chandra, Head, STTD, Dr. Ramesh Sundaram, ACD, CSIR-NAL are acknowledged. Thanks are also due to scientists and technical support staff members of FSIG-STTD and ACD, CSIR-NAL for their assistance in experimental work.

References

  1. 1.
    Hexcel ready to fly on the A350 XWB, Reinf. Plast. 57, 25–26 (2013)Google Scholar
  2. 2.
    A.C. Garg, Delamination—a damage mode in composite structures. Eng. Frac. Mech. 29, 557–584 (1988)CrossRefGoogle Scholar
  3. 3.
    R.P. Wei, Fracture Mechanics: Integration of Mechanics, Materials Science, and Chemistry (Cambridge University Press, 2010)Google Scholar
  4. 4.
    FAA, Composite Aircraft Structure: Advisory Circular (AC) 20-107B, Change 1, FAA (2010)Google Scholar
  5. 5.
    N.L. Post, S.W. Case, J.J. Lesko, Modeling the variable amplitude fatigue of composite materials: a review and evaluation of the state of the art for spectrum loading. Inter. J. Fatigue 30, 2064–2086 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    N. Jagannathan, A.R. Anilchandra, C.M. Manjunatha, Onset-of-growth behavior of mode II delamination in a carbon fiber composite under spectrum fatigue load. Compos. Struct. 132, 477–483 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Wisnom, M. Jones, Through thickness fatigue failure of fibre-reinforced composites. Aeronaut. J. 102, 83–88 (1998)Google Scholar
  8. 8.
    J. Petermann, A. Plumtree, A unified fatigue failure criterion for unidirectional laminates. Compos. Part A: Appl. Sci. Manuf. 32, 107–118 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Hojo, K. Tanaka, C.G. Gustafson, R. Hayashi, Effect of stress ratio on near-threshold propagation of delamination fatigue cracks in unidirectional CFRP. Compos. Sci. Technol. 29, 273–292 (1987)CrossRefGoogle Scholar
  10. 10.
    I. Maillet, L. Michel, F. Souric, Y. Gourinat, Mode II fatigue delamination growth characterization of a carbon/epoxy laminate at high frequency under vibration loading. Eng. Frac. Mech. 149, 298–312 (2015)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    A.R. Anilchandra, R. Bojja, N. Jagannathan, C.M. Manjunatha, Variable amplitude fatigue testing to characterize mode II delamination in a polymer composite. Trans. Indian Inst. Met. 69, 421–424 (2016)CrossRefGoogle Scholar
  13. 13.
    P. Heuler, H. Klätschke, Generation and use of standardised load spectra and load–time histories. Int. J. Fatigue 27, 974–990 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    W.X. Wang, M. Nakata, Y. Takao, T. Matsubara, Experimental investigation of test methods for mode II interlaminar fracture testing of carbon fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 40, 1447–1455 (2009)CrossRefGoogle Scholar
  15. 15.
    ASTM D6115, Standard test method for mode I fatigue delamination growth onset of unidirectional fiber-reinforced polymer matrix composites, vol. 15.03. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2003Google Scholar
  16. 16.
    A.J. Vinciquerra, B.D. Davidson, J.R. Schaff, A.L. Smith, Determination of the mode II fatigue delamination toughness of laminated composites. J. Reinf. Plast. Compos. 21, 663–677 (2002)CrossRefGoogle Scholar
  17. 17.
    ASTM E1049, Standard practices for cycle counting in fatigue analysis. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2003Google Scholar
  18. 18.
    I. Maillet, L. Michel, F. Souric, Y. Gourinat, Mode II fatigue delamination growth characterization of a carbon/epoxy laminate at high frequency under vibration loading. Eng. Fract. Mech. 149, 298–312 (2015)CrossRefGoogle Scholar
  19. 19.
    C.M. Manjunatha, R. Bojja, N. Jagannathan, Enhanced fatigue performance of a polymer nanocomposite under spectrum loads. Mater. Perform. Charact. 3, 327–341 (2014)Google Scholar
  20. 20.
    C.M. Manjunatha, R. Bojja, N. Jagannathan, A.J. Kinloch, A.C. Taylor, Enhanced fatigue behavior of a glass fiber reinforced hybrid particles modified epoxy nanocomposite under WISPERX spectrum load sequence. Int. J. Fatigue 54, 25–31 (2013)CrossRefGoogle Scholar
  21. 21.
    B.L.V. Bak, C. Sarrado, A. Turon, J. Costa, Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods. Appl. Mech. Rev. 66, 1–24 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Argüelles, J. Viña, A.F. Canteli, M.A. Castrillo, J. Bonhomme, Interlaminar crack initiation and growth rate in a carbon-fibre epoxy composite under mode-I fatigue loading. Compos. Sci. Technol. 68, 2325–2331 (2008)CrossRefGoogle Scholar
  23. 23.
    T.K. O’Brien, W.M. Johnston, G.J. Toland, Mode II interlaminar fracture toughness and fatigue characterization of a graphite Epoxy Compos Mater, NASA/TM–2010-216838Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • A. R. Anilchandra
    • 1
    Email author
  • M. Seshagirachari
    • 1
  • Ramesh Bojja
    • 1
  • N. Jagannathan
    • 1
  • C. M. Manjunatha
    • 1
  1. 1.Structural Technologies Division, Fatigue and Structural Integrity GroupCSIR-National Aerospace LaboratoriesBengaluruIndia

Personalised recommendations