Skip to main content

High Performance Trench Gate Power MOSFET of Indium Phosphide

  • Conference paper
  • First Online:
Nanoelectronic Materials and Devices

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 466))

  • 658 Accesses

Abstract

Indium Phosphide material-based trench gate power MOSFET has been proposed as an efficient power device for low to medium voltage power applications. Use of Indium Phosphide material, because of its larger band gap, improves the OFF-state performance, like increased breakdown voltage and reduced OFF-state leakage current. On the other hand, its high electron mobility and diffusivity result in higher drive current capability, which in turn, significantly improves the transconductance and reduces ON-state resistance. Using 2D numerical simulations, we have shown that the proposed Indium Phosphide-based trench MOSFET shows 36% improvement in breakdown voltage, 75% reduction in ON resistance and 400% improvement in peak transconductance as compared to the equivalent Si trench MOSFET of ~50 V class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baliga, B.J. 1996. Power semiconductor devices, 377–380. Boston, MA: PSW Publishing.

    Google Scholar 

  2. Saxena, R.S., and M.J. Kumar. Trench gate power MOSFET: Recent advances and innovations. In Advances in microelectronics and photonics, Chap. 1, Nova Science Publishers, Inc. 400 Oser Avenue, Suite 1600, Hauppauge, NY 11788, USA.

    Google Scholar 

  3. Saxena, R.S., and M.J. Kumar. 2009. Dual material gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs. IEEE Transactions on Electron Devices 56 (3): 517–522.

    Article  MathSciNet  Google Scholar 

  4. Saxena, R.S., and M.J. Kumar. 2009. A stepped oxide hetero-material gate trench power MOSFET for improved performance. IEEE Transactions on Electron Devices 56 (6): 1355–1359.

    Article  Google Scholar 

  5. Saxena, R.S., and M.J. Kumar. 2009. A new buried-oxide-in-drift-region trench MOSFET with improved breakdown voltage. IEEE Electron Device Letters 30 (9): 990–992.

    Article  Google Scholar 

  6. Saxena, R.S. and M.J. Kumar. 2009. Design of trench gate power MOSFET for RF and switching applications. In Proceedings of XV International Workshop on the Physics of Semiconductor Devices, New Delhi, India, 15–19 Dec 2009, 415–419.

    Google Scholar 

  7. Saxena, R.S., and M.J. Kumar. 2012. Poly-silicon spacer gate technique to reduce gate charge of a trench power MOSFET. IEEE Transactions on Electron Devices 59 (3): 738–744.

    Article  Google Scholar 

  8. Saxena, R.S., and M.J. Kumar. 2008. A new strained-silicon channel trench gate power MOSFET: Design and analysis. IEEE Transactions on Electron Devices 55 (11): 3229–3304.

    Article  Google Scholar 

  9. Juang, M.H., W.C. Chueh, and S.L. Jang. 2006. The formation of trench-gate power MOSFETs with a SiGe channel region. Semiconductor Science and Technology 21: 799–802.

    Article  Google Scholar 

  10. Wang, Y., H.F. Hu, C. Cheng. 2008. Modeling and simulation of power trench MOSFET with SiGeC-Based channel. In Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 8–10 Dec 2008, 1–4.

    Google Scholar 

  11. Chau, R. 2008. Integrating III–V on silicon for future transistor applications. Solid State Technology 51 (7): 30–36.

    Google Scholar 

  12. Huang, C.Y. et al. 2014. Low Power III–V InGaAs MOSFETs featuring InP recessed source/drain spacers with Ion = 120 µA/µm at Ioff = 1 nA/µm and VDS = 0.5 V. In 2014 IEEE International on Electron Devices Meeting (IEDM), San Francisco, CA, 25.4.1–25.4.4.

    Google Scholar 

  13. Wu, Y.Q., Y. Xuan, T. Shen, P.D. Ye, Z. Cheng, and A. Lochtefeld. 2007. Enhancement-mode InP n-channel metal-oxide-semiconductor field-effect transistors with atomic-layer-deposited Al2O3 dielectrics. Birck and NCN Publications. Paper 241.

    Google Scholar 

  14. Semiconductors. Available: http://www.ioffe.ru/SVA/NSM/Semicond/.

  15. Silvaco, 2-D Device Simulaor Atlas. [Online]. Available: http://www.silvaco.com/products/device_simulation/atlas.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vigneswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tahalyani, G., Saxena, R.S., Vigneswaran, T. (2018). High Performance Trench Gate Power MOSFET of Indium Phosphide. In: Labbé, C., Chakrabarti, S., Raina, G., Bindu, B. (eds) Nanoelectronic Materials and Devices. Lecture Notes in Electrical Engineering, vol 466. Springer, Singapore. https://doi.org/10.1007/978-981-10-7191-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7191-1_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7190-4

  • Online ISBN: 978-981-10-7191-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics