Skip to main content

The Sustainable Option of Power from Fossil Fuels with Carbon Capture and Storage: An Overview of State-of-the-Art Technology

  • Chapter
  • First Online:
Sustainable Energy Technology and Policies

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

To limit the global rise in temperature to 1.5–2 °C, considerable reductions in greenhouse gas emissions, especially CO2, are needed—challenging because of the continuous increases in energy demand and the large contribution from fossil fuels. Gas-fired power plants will be a significant part of power generation over the next few decades, and whilst CO2 emissions are significantly lower than for coal, they must still be addressed to lower carbon intensity. This can be achieved through carbon capture and storage (CCS) as a key enabling technology. This chapter aims to summarize the key research on state-of-the-art gas turbine technologies for enhanced post-combustion capture and oxy-turbine gas-CCS cycles, including the technical challenges and opportunities. For post-combustion systems, supplementary firing, humidification, exhaust gas recirculation and selective exhaust gas recirculation will be assessed, which outline the CO2 increases and electrical efficiencies achievable when considering the capture penalty. An alternative to post-combustion capture is the use of oxy-turbine cycles, where the relative merits are assessed. Lastly, this chapter discusses the impacts of the technical, policy, financial and social challenges on scaling-up these technologies for full-chain commercial-level deployment. Overcoming these will be a necessity to enable CCS to decarbonize energy for a sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BP (2017). BP Energy Outlook

    Google Scholar 

  2. IEA (2016) World energy outlook 2016

    Google Scholar 

  3. United Nations Framework Convention on Climate Change (2017) The Paris Agreement. Retrieved September 2017, Available from: http://unfccc.int/paris_agreement/items/9485.php

  4. IEA (2013) Technology roadmap. Carbon capture and storage

    Google Scholar 

  5. Abanades JC, Arias B, Lyngfelt A, Mattisson T, Wiley DE, Li H, Ho MT, Mangano E, Brandani S (2015) Emerging CO2 capture systems. Int J Greenhouse Gas Control 40:126–166

    Article  Google Scholar 

  6. Jansen D, Gazzani M, Manzolini G, Ev Dijk, Carbo M (2015) Pre-combustion CO2 capture. Int J Greenhouse Gas Control 40:167–187

    Article  Google Scholar 

  7. IPCC (2005) IPCC Special report on carbon dioxide capture and storage. In: Prepared by working group III of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

    Google Scholar 

  8. ZEP (2011) The costs of CO2 capture: post-demonstration CCS in the EU

    Google Scholar 

  9. Global CCS Institute. (2017) Large Scale CCS Projects. Retrieved September 2017, Available from: https://www.globalccsinstitute.com/projects/large-scale-ccs-projects

  10. Ringrose PS, Mathieson AS, Wright IW, Selama F, Hansen O, Bissell R, Saoula N, Midgley J (2013) The In Salah CO2 storage project: lessons learned and knowledge transfer. Energy Procedia 37:6226–6236

    Article  Google Scholar 

  11. SaskPower (2017) SaskPower CCS: Boundary Dam Carbon Capture Project. Available from: saskpower.com/our-power-future/carbon-capture-and-storage/boundary-dam-carbon-capture-project/

  12. Stéphenne K (2014) Start-up of world’s first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. Energy Procedia 63:6106–6110

    Article  Google Scholar 

  13. Worth K, White D, Chalaturnyk R, Sorensen J, Hawkes C, Rostron B, Johnson J, Young A (2014) Aquistore project measurement, monitoring, and verification: from concept to CO2 injection. Energy Procedia 63:3202–3208

    Article  Google Scholar 

  14. NRG (2017) NRG Energy, JX nippon complete world’s largest post-combustion carbon capture facility on-budget and on-schedule. Retrieved September 2017, Available from: http://investors.nrg.com/phoenix.zhtml?c=121544&p=irol-newsArticle&ID=2236424

  15. Diego ME, Akram M, Bellas J-M, Finney KN, Pourkashanian M (2017) Making gas-CCS a commercial reality: the challenges of scaling up. Greenhouse Gases: Sci Technol 7:778–801

    Article  Google Scholar 

  16. Li H, Ditaranto M, Berstad D (2011) Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture. Energy 36:1124–1133

    Article  Google Scholar 

  17. Gouedard C, Picq D, Launay F, Carrette PL (2012) Amine degradation in CO2 capture. I. A review. Int J Greenhouse Gas Control 10:244–270

    Article  Google Scholar 

  18. IEAGHG (2012) CO2 capture at gas fired power plants. Cheltenham, UK

    Google Scholar 

  19. Kehlhofer R (1991) Combined-Cycle gas & steam turbine power plants. Pennwell Books, Lilburn, GA

    Google Scholar 

  20. Arrieta FRP, Lora EES (2005) Influence of ambient temperature on combined-cycle power-plant performance. Appl Energy 80:261–272

    Article  Google Scholar 

  21. Bhattacharya A, Datta A (2013) Effects of supplementary biomass firing on the performance of combined cycle power generation: a comparison between NGCC and IGCC plants. Biomass Bioenerg 54:239–249

    Article  Google Scholar 

  22. Biliyok C, Yeung H (2013) Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int J Greenhouse Gas Control 19:396–405

    Article  Google Scholar 

  23. Datta A, Mondal S, Gupta SD (2008) Perspectives for the direct firing of biomass as a supplementary fuel in combined cycle power plants. Int J Energy Res 32:1241–1257

    Article  Google Scholar 

  24. González Díaz A, Sánchez Fernández E, Gibbins J, Lucquiaud M (2016) Sequential supplementary firing in natural gas combined cycle with carbon capture: a technology option for Mexico for low-carbon electricity generation and CO2 enhanced oil recovery. Int J Greenhouse Gas Control 51:330–345

    Article  Google Scholar 

  25. Li H, Ditaranto M, Yan J (2012) Carbon capture with low energy penalty: supplementary fired natural gas combined cycles. Appl Energy 97:164–169

    Article  Google Scholar 

  26. Ansaldo Energia (2014) Open and combined cycles

    Google Scholar 

  27. Biliyok C, Canepa R, Hanak DP (2015) Investigation of alternative strategies for integrating post-combustion CO2 capture to a natural gas combined cycle power plant. Energy Fuels 29:4624–4633

    Article  Google Scholar 

  28. Ganapathy V (1996) Heat-recovery steam generators: understand the basics. Chem Eng Progress 92:32

    Google Scholar 

  29. González-Díaz A, Alcaráz-Calderón AM, González-Díaz MO, Méndez-Aranda Á, Lucquiaud M, González-Santaló JM (2017) Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture. Energy 134:221–233

    Article  Google Scholar 

  30. Zhang W, Magee J, Singh H, Ruchti C, Selby G (2012) HRSG development for the future. PowerGen Europe, Cologne

    Google Scholar 

  31. Carapellucci R, Milazzo A (2007) Repowering combined cycle power plants by a modified STIG configuration. Energy Convers Manag 48:1590–1600

    Article  Google Scholar 

  32. De Paepe W, Delattin F, Bram S, De Ruyck J (2012) Steam injection experiments in a microturbine—A thermodynamic performance analysis. Appl Energy 97:569–576

    Article  Google Scholar 

  33. De Paepe W, Delattin F, Bram S, De Ruyck J (2013) Water injection in a micro gas turbine—Assessment of the performance using a black box method. Appl Energy 112:1291–1302

    Article  Google Scholar 

  34. Delattin F, Bram S, Knoops S, De Ruyck J (2008) Effects of steam injection on microturbine efficiency and performance. Energy 33:241–247

    Article  Google Scholar 

  35. Gallo WLR (1997) A comparison between the hat cycle and other gas-turbine based cycles: Efficiency, specific power and water consumption. Energy Convers Manag 38:1595–1604

    Article  Google Scholar 

  36. Lee JJ, Jeon MS, Kim TS (2010) The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application. Appl Energy 87:1307–1316

    Article  Google Scholar 

  37. Poullikkas A (2005) An overview of current and future sustainable gas turbine technologies. Renew Sustain Energy Rev 9:409–443

    Article  Google Scholar 

  38. Traverso A, Massardo AF (2002) Thermoeconomic analysis of mixed gas-steam cycles. Appl Therm Eng 22:1–21

    Article  Google Scholar 

  39. Wang FJ, Chiou JS (2002) Performance improvement for a simple cycle gas turbine GENSET—A retrofitting example. Appl Therm Eng 22:1105–1115

    Article  Google Scholar 

  40. Jonsson M, Yan J (2005) Humidified gas turbines—A review of proposed and implemented cycles. Energy 30:1013–1078

    Article  Google Scholar 

  41. Kayadelen HK, Ust Y (2017) Thermodynamic, environmental and economic performance optimization of simple, regenerative, STIG and RSTIG gas turbine cycles. Energy 121:751–771

    Article  Google Scholar 

  42. Takahashi T, Koda E, Mimaki T (2002) A systematic analysis of the effect of air humidification to gas turbine systems. Jpn Soc Mech Eng Int Journal—Ser B 45:530–535

    Google Scholar 

  43. Yari M, Sarabchi K (2005) Modelling and optimization of part-flow evaporative gas turbine cycles. Proc Inst Mech Eng, Part A: J Power Energy 219:533–548

    Article  Google Scholar 

  44. Gabrielsson R, Torisson T (2003) Research and development for turbo machinery-based electric generation in a sustainable energy system. Lund (Sweden)

    Google Scholar 

  45. Rao AD, Day WH (1996) Mitigation of greenhouse gases from gas turbine power plants. Energy Convers Manag 37:909–914

    Article  Google Scholar 

  46. Akram M, Ali U, Best T, Blakey S, Finney KN, Pourkashanian M (2016) Performance evaluation of PACT pilot-plant for CO2 capture from gas turbines with exhaust gas recycle. Int J Greenhouse Gas Control 47:137–150

    Article  Google Scholar 

  47. Cohen H, Rogers GFC, Saravanamuttoo HIH (1996) Gas turbine theory. Longman Group Limited, Harlow, England

    Google Scholar 

  48. Wei C, Zang S (2013) Experimental investigation on the off-design performance of a small-sized humid air turbine cycle. Appl Therm Eng 51:166–176

    Article  Google Scholar 

  49. Heppenstall T (1998) Advanced turbine cycles for power generation: a critical review. Appl Therm Eng 18:837–846

    Article  Google Scholar 

  50. Abdallah H, Harvey S (2001) Thermodynamic analysis of chemically recuperated gas turbines. Int J Therm Sci 40:372–384

    Article  Google Scholar 

  51. Chiesa P (2012) Chapter 5: Novel cycles: humid air cycle systems combined cycle systems for near-zero emission power generation. Woodhead Publishing (Elsevier), Cambridge

    Google Scholar 

  52. Horlock JH (2003) Advanced gas turbine cycles. Elsevier Science Ltd, Oxford, UK

    Google Scholar 

  53. Rao A (2015) Evaporative Gas Turbine (EvGT)/Humid Air Turbine (HAT) Cycles. Handbook of Clean Energy Systems, Wiley, Hoboken

    Google Scholar 

  54. Montero Carrero M, De Paepe W, Bram S, Parente A, Contino F (2017a). Does humidification improve the micro Gas Turbine cycle? Thermodynamic assessment based on Sankey and Grassmann diagrams. Appl Energy https://doi.org/10.1016/j.apenergy.2017.05.067

  55. Montero Carrero M, De Paepe W, Magnusson J, Parente A, Bram S, Contino F (2017) Experimental characterisation of a micro Humid Air Turbine: Assessment of the thermodynamic performance. Appl Therm Eng 118:796–806

    Article  Google Scholar 

  56. Li H, Flores S, Hu Y, Yan J (2009) Simulation and optimization of evaporative gas turbine with chemical absorption for carbon dioxide capture. Int J Green Energy 6:527–539

    Article  Google Scholar 

  57. Manfrida G (1999) Opportunities for high-efficiency electricity generation inclusive of CO2 capture. Int J Appl Thermodyn 2:165–175

    Google Scholar 

  58. Nyberg B, Thern M (2012) Thermodynamic studies of a HAT cycle and its components. Appl Energy 89:315–321

    Article  Google Scholar 

  59. Zhang C, Wang X, Yang C, Yang Z (2017) Control strategies of steam-injected gas turbine in CCHP system. Energy Procedia 105:1520–1525

    Article  Google Scholar 

  60. De Paepe W, Montero Carrero M, Bram S, Parente A, Contino F (2017) Advanced humidified gas turbine cycle concepts applied to micro gas turbine applications for optimal waste heat recovery. Energy Procedia 105:1712–1718

    Article  Google Scholar 

  61. Ghazikhani M, Passandideh-Fard M, Mousavi M (2011) Two new high-performance cycles for gas turbine with air bottoming. Energy 36:294–304

    Article  Google Scholar 

  62. Han W, Jin H, Zhang N, Zhang X (2007) Cascade utilization of chemical energy of natural gas in an improved CRGT cycle. Energy 32:306–313

    Article  Google Scholar 

  63. Desideri U, Di Maria F (1997) Water recovery from HAT cycle exhaust gas: A possible solution for reducing stack temperature problems. Int J Energy Res 21:809–822

    Article  Google Scholar 

  64. Wan K, Zhang S, Wang J, Xiao Y (2010) Performance of humid air turbine with exhaust gas expanded to below ambient pressure based on microturbine. Energy Convers Manag 51:2127–2133

    Article  Google Scholar 

  65. Wang Y, Lior N (2007) Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems—Part 2: The evaporative gas turbine based system and some discussions. Desalination 207:243–256

    Article  Google Scholar 

  66. Chacartegui R, Blanco MJ, Muñoz de Escalona JM, Sánchez D, Sánchez T (2013) Performance assessment of molten carbonate fuel cell-humid air turbine hybrid systems. Appl Energy 102:687–699

    Article  Google Scholar 

  67. Kuchonthara P, Bhattacarya S, Tsutsumi A (2003) Combinations of solid oxide fuel cell and several enhanced gas turbine cycles. J Power Sources 124:65–75

    Article  Google Scholar 

  68. Layi Fagbenle R, Oguaka ABC, Olakoyejo OT (2007) A thermodynamic analysis of a biogas-fired integrated gasification steam injected gas turbine (BIG/STIG) plant. Appl Therm Eng 27:2220–2225

    Article  Google Scholar 

  69. Livshits M, Kribus A (2012) Solar hybrid steam injection gas turbine (STIG) cycle. Sol Energy 86:190–199

    Article  Google Scholar 

  70. Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z (2010) A review of integration strategies for solid oxide fuel cells. J Power Sources 195:685–702

    Article  Google Scholar 

  71. De Paepe M, Dick E (2001) Technological and economical analysis of water recovery in steam injected gas turbines. Appl Therm Eng 21:135–156

    Article  Google Scholar 

  72. Cleeton JPE, Kavanagh RM, Parks GT (2009) Blade cooling optimisation in humid-air and steam-injected gas turbines. Appl Therm Eng 29:3274–3283

    Article  Google Scholar 

  73. Bolland O, Sæther S (1992) New concepts for natural gas fired power plants which simplify the recovery of carbon dioxide. Energy Convers Manag 33:467–475

    Article  Google Scholar 

  74. Ali U, Agbonghae EO, Hughes KJ, Ingham DB, Ma L, Pourkashanian M (2016) Techno-economic process design of a commercial-scale amine-based CO2 capture system for natural gas combined cycle power plant with exhaust gas recirculation. Appl Therm Eng 103:747–758

    Article  Google Scholar 

  75. DOE/NETL (2013) Current and future technologies for Natural Gas Combined Cycle (NGCC) Power Plants. U. S. Department of Energy

    Google Scholar 

  76. Jonshagen K, Sipöcz N, Genrup M (2011) A novel approach of retrofitting a combined cycle with post combustion CO2 capture. J Eng Gas Turbines Power 133:011703

    Article  Google Scholar 

  77. Li H, Haugen G, Ditaranto M, Berstad D, Jordal K (2011) Impacts of exhaust gas recirculation (EGR) on the natural gas combined cycle integrated with chemical absorption CO2 capture technology. Energy Procedia 4:1411–1418

    Article  Google Scholar 

  78. Best T, Finney KN, Ingham DB, Pourkashanian M (2016) Impact of CO2-enriched combustion air on micro-gas turbine performance for carbon capture. Energy 115:1138–1147

    Article  Google Scholar 

  79. Best T, Finney KN, Santis AD, Ingham DB, Pourkashanian M (2016) Exhaust gas recirculation and selective exhaust gas recirculation on a micro-gas turbine for enhanced CO2 capture performance. In: The future of gas turbine technology: 8th International gas turbine conference, Brussels, Belgium. Paper ID Number (31-IGTC16)

    Google Scholar 

  80. Evulet AT, ElKady AM, Brand AR, Chinn D (2009) On the performance and operability of GE’s dry low NOx combustors utilizing exhaust gas recirculation for post-combustion carbon capture. Energy Procedia 1:3809–3816

    Article  Google Scholar 

  81. Røkke PE, Hustad JE (2005) Exhaust gas recirculation in gas turbines for reduction of CO2 emissions: Combustion testing with focus on stability and emissions. Int J Thermodyn 8:167–173

    Google Scholar 

  82. De Santis A, Ingham DB, Ma L, Pourkashanian M (2016) CFD analysis of exhaust gas recirculation in a micro gas turbine combustor for CO2 capture. Fuel 173:146–154

    Article  Google Scholar 

  83. Peeters ANM, Faaij APC, Turkenburg WC (2007) Techno-economic analysis of natural gas combined cycles with post-combustion CO2 absorption, including a detailed evaluation of the development potential. Int J Greenhouse Gas Control 1:396–417

    Article  Google Scholar 

  84. ElKady AM, Evulet A, Brand A, Ursin TP, Lynghjem A (2009) Application of exhaust gas recirculation in a DLN F-class combustion system for postcombustion carbon capture. J Eng Gas Turbines Power 131:034505

    Article  Google Scholar 

  85. Jansohn P, Griffin T, Mantzaras I, Marechal F, Clemens F (2011) Technologies for gas turbine power generation with CO2 mitigation. Energy Procedia 4:1901–1908

    Article  Google Scholar 

  86. Ditaranto M, Hals J, Bjørge T (2009) Investigation on the in-flame NO reburning in turbine exhaust gas. Proc Combust Inst 32:2659–2666

    Article  Google Scholar 

  87. ElKady AM, Evulet A, Brand A, Ursin TP, Lynghjem A (2008) Exhaust gas recirculation in DLN F-class gas turbines for post-combustion CO2 capture. ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany. 847–854

    Google Scholar 

  88. Merkel TC, Wei X, He Z, White LS, Wijmans JG, Baker RW (2013) Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Ind Eng Chem Res 52:1150–1159

    Article  Google Scholar 

  89. Diego ME, Bellas J-M, Pourkashanian M (2017) Process analysis of selective exhaust gas recirculation for CO2 capture in natural gas combined cycle power plants using amines. J Eng Gas Turbines Power 139:121701–121710

    Article  Google Scholar 

  90. Herraiz L (2016) Selective exhaust gas recirculation in combined cycle gas turbine power plants with post-combustion carbon capture

    Google Scholar 

  91. Marsh R, Giles A, Runyon J, Pugh D, Bowen P, Morris S, Valera-Medina A, Best T, Finney KN, Pourkashanian M (2016) Selective exhaust gas recycling for carbon capture applications: combustion and operability measurement. In: The future of gas turbine technology: 8th international gas turbine conference. Paper ID Number (32-IGTC16)

    Google Scholar 

  92. Turi DM, Ho M, Ferrari MC, Chiesa P, Wiley DE, Romano MC (2017) CO2 capture from natural gas combined cycles by CO2 selective membranes. Int J Greenhouse Gas Control 61:168–183

    Article  Google Scholar 

  93. IEAGHG (2015) Oxy-combustion turbine power plants

    Google Scholar 

  94. Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J, Rahiala S, Hyppänen T, Mletzko J, Kather A, Santos S (2015) Oxyfuel combustion for CO2 capture in power plants. Int J Greenhouse Gas Control 40:55–125

    Article  Google Scholar 

  95. Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 38:215–282

    Article  Google Scholar 

  96. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari M-C, Gross R, Hallett JP, Haszeldine RS, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter RTJ, Pourkashanian M, Rochelle GT, Shah N, Yao JG, Fennell PS (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189

    Article  Google Scholar 

  97. Allam R, Martin S, Forrest B, Fetvedt J, Lu X, Freed D, Brown GW, Sasaki T, Itoh M, Manning J (2017) Demonstration of the Allam Cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia 114:5948–5966

    Article  Google Scholar 

  98. Allam RJ, Palmer MR, Brown GW, Fetvedt J, Freed D, Nomoto H, Itoh M, Okita N, Jones C (2013) High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide. Energy Procedia 37:1135–1149

    Article  Google Scholar 

  99. Iwai Y, Itoh M, Morisawa Y, Suzuki S, Cusano D, Harris M (2015) Development approach to the combustor of gas turbine for oxy-fuel, supercritical CO2 cycle. In: ASME Turbo Expo 2015: Turbine technical conference and exposition. Montreal, Canada

    Google Scholar 

  100. Anderson RE, MacAdam S, Viteri F, Davies DO, Downs JP, Paliszewski A (2008) Adapting gas turbines to zero emission oxy-fuel power plants. ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany pp 781–791

    Google Scholar 

  101. Anderson R, Viteri F, Hollis R, Keating A, Shipper J, Merrill G, Schillig C, Shinde S, Downs J, Davies D, Harris M (2010) Oxy-fuel gas turbine, gas generator and reheat combustor technology development and demonstration pp 733–743

    Google Scholar 

  102. Anderson R, Hustad C, Skutley P, Hollis R (2014) Oxy-fuel turbo machinery development for energy intensive industrial applications. Energy Procedia 63:511–523

    Article  Google Scholar 

  103. Pronske K (2013) Oxy-turbine technology update Available from: https://ukccsrc.ac.uk/sites/default/files/documents/blog/gasccsmay2013/christian_biebuyck.pdf

  104. Jericha H, Sanz W, Göttlich E (2008) Design concept for large output Graz cycle gas turbines. J Eng Gas Turbines and Power 130:011701–011710

    Article  Google Scholar 

  105. Sanz W, Jericha H, Moser M, Heitmeir F (2005) Thermodynamic and economic investigation of an improved Graz cycle power plant for CO2 capture. J Eng Gas Turbines Power 127:765–772

    Article  Google Scholar 

  106. Jericha H, Sanz W, Göttlich E, Neumayer F (2008) Design details of a 600 MW Graz cycle thermal power plant for CO2 capture. pp 507–516

    Google Scholar 

  107. Braunreiter L, Bennett SJ (2017) The neglected importance of corporate perceptions and positions for the long-term development of CCS. Energy Procedia 114:7197–7204

    Article  Google Scholar 

  108. Parsons EL, Shelton WW (2002) Advanced fossil power systems comparison study. Final Report

    Google Scholar 

  109. Reichl AE, Schneider R, Ohligschläger A, Rogalinski T, Hauke S (2014) Process development and scale-up for post combustion carbon capture—validation with pilot plant operation. Energy Procedia 63:6379–6392

    Article  Google Scholar 

  110. Kapetaki Z, Hetland J, Guenan TL, Mikunda T, Scowcroft J (2017) Highlights and lessons from the EU CCS demonstration project network. Energy Procedia 114:5562–5569

    Article  Google Scholar 

  111. Spence B, Horan D, Tucker O (2014) The Peterhead-Goldeneye gas post-combustion CCS project. Energy Procedia 63:6258–6266

    Article  Google Scholar 

  112. Inc. NE (2017) Petra Nova. Available from: nrg.com/generation/projects/petra-nova/

    Google Scholar 

  113. Oxburgh R (2016) Lowest cost decarbonisation for the UK: The critical role of CCS—Report to the Secretary of State for Business, Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS). Available from: sccs.org.uk/images/expertise/reports/oxford/oxburgh_report_the_critical_role_of_CCS.pdf

  114. Lipponen J, McCulloch S, Keeling S, Stanley T, Berghout N, Berly T (2017) The politics of large-scale CCS deployment. Energy Procedia 114:7581–7595

    Article  Google Scholar 

  115. SCCS (2016) Scottish Carbon Capture and Storage: Expertise—Global CCS Map. Available from: sccs.org.uk/expertise/global-ccs-map

  116. Billson M, Pourkashanian M (2017) The evolution of European CCS policy. Energy Procedia 114:5659–5662

    Article  Google Scholar 

  117. Karimi F (2017) Timscapes of CCS projects: Is deferring projects and policies just kicking the can down the road? Energy Procedia 114:7317–7325

    Article  Google Scholar 

  118. Vercelli S, Lombardi S, Modesti F, Tartarello MC, Finoia MG, Angelis DD, Bigi S, Ruggiero L, Pirrotta S (2017) Making the communication of CCS more “human”. Energy Procedia 114:7367–7378

    Article  Google Scholar 

  119. Kapetaki Z, Scowcroft J (2017) Overview of carbon capture and storage (CCS) demonstration project business models: risks and enablers on the two sides of the Atlantic. Energy Procedia 114:6623–6630

    Article  Google Scholar 

  120. O’Connor C, Chalmers H, Wright S, Adderley B, Gibbins J (2017) Developing CCS in the UK and beyond: insights from the UK CCS Research Centre. Energy Procedia 114

    Google Scholar 

  121. Osmundsen P, Emhjellen M (2010) CCS from the gas-fired power station at Kårstø? A commercial analysis. Energy Policy 38:7818–7826

    Article  Google Scholar 

  122. BP (2017) BP statistical review of world energy June 2017. Available from:bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf

  123. CCSA HM Treasury consultation—carbon capture & storage: a consultation on barriers to commercial deployment, response by the Carbon Capture & Storage Association (CCSA). Available from: ccsassociation.org/docs/2006/CCSA%20submission%20to%20HM%20Treasury%20Consultation.doc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Elena Diego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diego, M.E., Finney, K.N., Pourkashanian, M. (2018). The Sustainable Option of Power from Fossil Fuels with Carbon Capture and Storage: An Overview of State-of-the-Art Technology. In: De, S., Bandyopadhyay, S., Assadi, M., Mukherjee, D. (eds) Sustainable Energy Technology and Policies. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7188-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7188-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7187-4

  • Online ISBN: 978-981-10-7188-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics