Skip to main content

Effects of VOCs on Human Health

  • Chapter
  • First Online:
Air Pollution and Control

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

With broad commutability of pollutants, air pollution is a complicated issue that intimidates directly to human health and our environment. Various indoor and outdoor air pollution comprises of regulated and unregulated emissions. Volatile organic compounds (VOCs) are one of them which are carcinogenic and lead to photochemical reactions. Emissions of VOCs are directly associated with large number of industrial processes, emission through transportation, and various indoor and outdoor sources. Due to deleterious effect of different VOCs emitted from transportation, chemical industrial plants and from indoor on the environment make their eviction mandatory or at least degrade them under the limit set by environmental norms. So, it has turned a burning topic to diminish air pollutants and set a norm for volatile emissions. This study focuses on the major sources of carbonyl and aromatic compounds in indoor and outdoor environment. Some remedial processes like photocatalytic oxidation, plasma decomposition, chemisorption, and catalytic oxidation have been described in this study through which decomposition of these contaminants can be achieved. This chapter contains a deep study on health effects from the carbonyl and aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705

    Article  CAS  Google Scholar 

  2. Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Complete oxidation of formaldehyde over Ag/MnO x–CeO 2 catalysts. Chem Eng J 118:119–125

    Article  CAS  Google Scholar 

  3. Wieslander G, Norbäck D, Björnsson E, Janson C, Boman G (1996) Asthma and the indoor environment: the significance of emission of formaldehyde and volatile organic compounds from newly painted indoor surfaces. Int Arch Occup Environ Health 7:115–124

    Article  Google Scholar 

  4. Liang W, Li J, Jin Y (2012) Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build Environ 51:345–350

    Article  Google Scholar 

  5. Goode JW (1985) Toxicology of formaldehyde. Advances in Chemistry 210:217–227. doi:10.1021/ba-1985-0210.ch014

  6. Singh P, Chauhan SR (2016) Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: a review. Renew Sustain Energy Rev 63:269–291

    Article  CAS  Google Scholar 

  7. Caplain I, Cazier F, Nouali H, Mercier A, Déchaux JC, Nollet V, Joumard R, André JM, Vidon R (2006) Emissions of unregulated pollutants from European gasoline and diesel passenger cars. Atmos Environ 40:5954–5966

    Article  CAS  Google Scholar 

  8. Shi X, Pang X, Mu Y, He H, Shuai S, Wang J, Chen H, Li R (2006) Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmos Environ 40:2567–2574

    Article  CAS  Google Scholar 

  9. Agarwal AK, Shukla PC, Patel C, Gupta JG, Sharma N, Prasad RK, Agarwal RA (2016) Unregulated emissions and health risk potential from biodiesel (KB5, KB20) and methanol blend (M5) fuelled transportation diesel engines. Renew Energy 98:283–291

    Article  CAS  Google Scholar 

  10. Jia C, Batterman S, Godwin C (2008) VOCs in industrial, urban and suburban neighborhoods, Part 1: indoor and outdoor concentrations, variation, and risk drivers. Atmos Environ 42:2083–2100

    Article  CAS  Google Scholar 

  11. Karavalakis G, Stournas S, Bakeas E (2009) Light vehicle regulated and unregulated emissions from different biodiesels. Sci Total Environ 407:3338–3346

    Article  CAS  Google Scholar 

  12. Carlier P, Hannachi H, Mouvier G (1986) The chemistry of carbonyl compounds in the atmosphere—a review. Atmos Environ 20:2079–2099 (1967)

    Article  CAS  Google Scholar 

  13. Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278

    Article  CAS  Google Scholar 

  14. Yu C, Crump D (1998) A review of the emission of VOCs from polymeric materials used in buildings. Build Environ 33:357–374

    Article  Google Scholar 

  15. Baek SO, Kim YS, Perry R (1997) Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships. Atmos Environ 31:529–544

    Article  CAS  Google Scholar 

  16. Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94:57–66

    Article  CAS  Google Scholar 

  17. Anderson LG, Lanning JA, Barrell R, Miyagishima J, Jones RH, Wolfe P (1996) Sources and sinks of formaldehyde and acetaldehyde: an analysis of Denver’s ambient concentration data. Atmos Environ 30:2113–2123

    Article  CAS  Google Scholar 

  18. Altshuller AP (1993) Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. Atmos Environ Part A Gen Top 27:21–32

    Article  Google Scholar 

  19. Altshuller AP (1991) Chemical reactions and transport of alkanes and their products in the troposphere. J Atmos Chem 12:19–61

    Article  CAS  Google Scholar 

  20. Stump FD, Knapp KT, Ray WD (1996) Influence of ethanol-blended fuels on the emissions from three pre-1985 light-duty passenger vehicles. J Air Waste Manag Assoc 46:1149–1161

    Article  CAS  Google Scholar 

  21. Faiz A (1993) Automotive emissions in developing countries-relative implications for global warming, acidification and urban air quality. Transp Res Part A: Policy Pract 27:167–186

    Article  Google Scholar 

  22. Poulopoulos SG, Samaras DP, Philippopoulos CJ (2001) Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmos Environ 35:4399–4406

    Article  CAS  Google Scholar 

  23. Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Combust Sci 24:125–164

    Article  CAS  Google Scholar 

  24. Takada K, Yoshimura F, Ohga Y, Kusaka J, Daisho Y (2003) Experimental study on unregulated emission characteristics of turbocharged DI diesel engine with common rail fuel injection system. SAE Technical Paper

    Google Scholar 

  25. Turrio-Baldassarri L, Battistelli CL, Conti L, Crebelli R, De Berardis B, Iamiceli AL, Gambino M, Iannaccone S (2004) Emission comparison of urban bus engine fueled with diesel oil and ‘biodiesel’ blend. Sci Total Environ 327:147–162

    Article  CAS  Google Scholar 

  26. Peng CY, Yang HH, Lan CH, Chien SM (2008) Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust. Atmos Environ 42(5):906–915

    Article  CAS  Google Scholar 

  27. Benner BA Jr, Gordon GE, Wise SA (1989) Mobile sources of atmospheric polycyclic aromatic hydrocarbons: a roadway tunnel study. Environ Sci Technol 23:1269–1278

    Article  CAS  Google Scholar 

  28. World Health oganisation (WHO) (1987) Polynuclear aromatic hydrocarbons (PAH). Air quality guidelines for Europe. World Health Organization Regional Office Europe, Copenhagen, pp 105–117

    Google Scholar 

  29. International Agency for Research on Cancer (IARC) (1983) Polynuclear aromatic compounds, part 1: chemical, environmental and experimental data. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 32

    Google Scholar 

  30. Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42:1371–1388

    Article  CAS  Google Scholar 

  31. Brown VM, Cockram AH, Crump DR, Gardiner D (1990) Investigations of the volatile organic compound content of indoor air in homes with an odorous damp proof membrane. Proc Indoor Air 90:557–580

    Google Scholar 

  32. Lee SC, Wang B (2006) Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos Environ 40:2128–2138

    Article  CAS  Google Scholar 

  33. Pagels J, Wierzbicka A, Nilsson E, Isaxon C, Dahl A, Gudmundsson A, Swietlicki E, Bohgard M (2009) Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci 40:193–208

    Article  CAS  Google Scholar 

  34. Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust Sci 26:565–608

    Article  CAS  Google Scholar 

  35. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  36. Borrás E, Tortajada-Genaro LA, Vázquez M, Zielinska B (2009) Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions. Atmos Environ 43:5944–5952

    Article  Google Scholar 

  37. Tancell PJ, Rhead MM, Trier CJ, Bell MA, Fussey DE (1995) The sources of benzo [a] pyrene in diesel exhaust emissions. Sci Total Environ 162:179–186

    Article  CAS  Google Scholar 

  38. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BR (1999) Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ Sci Technol 33:1578–1587

    Article  CAS  Google Scholar 

  39. Yunus Khan TM, Atabani AE, Badruddin IA, Ankalgi RF, Mainuddin Khan TK, Badarudin A (2015) Ceiba pentandra, Nigella sativa and their blend as prospective feedstocks for biodiesel. Ind Crops Product 65:367–373

    Article  CAS  Google Scholar 

  40. Di Y, Cheung CS, Huang Z (2009) Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Sci Total Environ 407:835–846

    Article  CAS  Google Scholar 

  41. Bakeas Evangelos B, Argyris Dimitrios I, Siskos Panayotis A (2003) Carbonyl compounds in the urban environment of Athens, Greece. Chemosphere 52(5):805–813

    Article  CAS  Google Scholar 

  42. IARC (International Agency for Research on Cancer) (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Monogr Eval Carcinog Risks Hum 92:765–771

    Google Scholar 

  43. Samet J (1990) Environmental controls and lung disease. Am Rev Respir Dis 142:915–939

    Article  Google Scholar 

  44. Singh A, Nair KC, Kamal R, Bihari V, Gupta MK, Mudiam MK, Satyanarayana GN, Raj A, Haq I, Shukla NK, Khan AH (2016) Assessing hazardous risks of indoor airborne polycyclic aromatic hydrocarbons in the kitchen and its association with lung functions and urinary PAH metabolites in kitchen workers. Clin Chim Acta 452:204–213

    Article  CAS  Google Scholar 

  45. Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50:395–403

    CAS  Google Scholar 

  46. IPCS (International Programme On Chemical Safety) (2010) Polycyclic aromatic hydrocarbons, selected non-heterocyclic. <http://www.inchem.org/documents/ehc/ehc/ehc202.htm>

  47. Carter WP (1995) Computer modeling of environmental chamber measurements of maximum incremental reactivities of volatile organic compounds. Atmos Environ 29:2513–2527

    Article  CAS  Google Scholar 

  48. Correa SM, Arbilla G (2008) Carbonyl emissions in diesel and biodiesel exhaust. Atmos Environ 42:769–775

    Article  Google Scholar 

  49. World Health Organization (1989) Evaluation of carcinogenic risks to humans: diesel and gasoline engine exhausts and some Nifroarines. IARC Monographs, International Agency for Research on Cancer. Lyon, France

    Google Scholar 

  50. Emmelin A, Nyström L, Wall S (1993) Diesel exhaust exposure and smoking: a case-referent study of lung cancer among Swedish dock workers. Epidemiology 4:237–244

    Article  CAS  Google Scholar 

  51. Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  52. Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer. Chest 123:72–82

    Article  Google Scholar 

  53. Domingo-Garcia M, Fernández-Morales I, Lopez-Garzon FJ, Moreno-Castilla C, Perez-Mendoza M (1999) On the adsorption of formaldehyde at high temperatures and zero surface coverage. Langmuir. 15:3226–3231

    Article  CAS  Google Scholar 

  54. Matsuo Y, Nishino Y, Fukutsuka T, Sugie Y (2008) Removal of formaldehyde from gas phase by silylated graphite oxide containing amino groups. Carbon 46:1162–1163

    Article  CAS  Google Scholar 

  55. Liang WJ, Li J, Li JX, Zhu T, Jin YQ (2010) Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. J Hazard Mater 175:1090–1095

    Article  CAS  Google Scholar 

  56. Xu Z, Qin N, Wang J, Tong H (2010) Formaldehyde biofiltration as affected by spider plant. Biores Technol 101:6930–6934

    Article  CAS  Google Scholar 

  57. Terelak K, Trybula S, Majchrzak M, Ott M, Hasse H (2005) Pilot plant formaldehyde distillation: experiments and modelling. Chem Eng Process 44:671–676

    Article  CAS  Google Scholar 

  58. Akbarzadeh R, Umbarkar SB, Sonawane RS, Takle S, Dongare MK (2010) Vanadia–titania thin films for photocatalytic degradation of formaldehyde in sunlight. Appl Catal A 374:103–109

    Article  CAS  Google Scholar 

  59. Sekine Y (2002) Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmos Environ 36:5543–5547

    Article  CAS  Google Scholar 

  60. Spivey JJ (1987) Complete catalytic oxidation of volatile organics. Ind Eng Chem Res 26:2165–2180

    Article  CAS  Google Scholar 

  61. Pei J, Zhang JS (2011) Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. Hvac R Res 17:476–503

    CAS  Google Scholar 

  62. Ding HX, Zhu AM, Lu FG, Xu Y, Zhang J, Yang XF (2006) Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. J Phys D Appl Phys 39:3603

    Article  CAS  Google Scholar 

  63. Wu PC, Li YY, Lee CC, Chiang CM, Su HJ (2003) Risk assessment of formaldehyde in typical office buildings in Taiwan. Indoor Air 13:359–363

    Article  CAS  Google Scholar 

  64. Zhu Z, Wu RJ (2015) The degradation of formaldehyde using a Pt@ TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem Eng 50:276–281

    Article  CAS  Google Scholar 

  65. Sharma M, Agarwal AK, Bharathi KV (2005) Characterization of exhaust particulates from diesel engine. Atmos Environ 39:3023–3028

    Article  CAS  Google Scholar 

  66. Tang S, Frank BP, Lanni T, Rideout G, Meyer N, Beregszaszy C (2007) Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems. Environ Sci Technol 41:5037–5043

    Article  CAS  Google Scholar 

  67. Sharp CA, Howell SA, Jobe J (2000) The effect of biodiesel fuels on transient emissions from modern diesel engines, part II unregulated emissions and chemical characterization. SAE Technical Paper

    Google Scholar 

  68. Jo WK, Park JH, Chun HD (2002) Photocatalytic destruction of VOCs for in-vehicle air cleaning. J Photochem Photobiol A 148:109–119

    Article  CAS  Google Scholar 

  69. Agency for Toxic Substance and Disease Registry. https://www.atsdr.cdc.gov/phs/phs.asp?id=218&tid=39

  70. Agency for Toxic Substances and Disease Registry (ATSDR) (1994) Toxicological profile for acetone. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/phs/phs.asp?id=3&tid=1

  71. Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological profile for Acrolein. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/phs/phs.asp?id=554&tid=102

  72. New jersey Department of Health and senior Services Hazardous Substance Fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/0196.pdf

  73. New jersey Department of Health and senior Services Hazardous Substance Fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/0299.pdf

  74. The Agency for Toxic Substances and Disease Registry (ATSDR) https://www.atsdr.cdc.gov/MMG/MMG.asp?id=947&tid=197

  75. Clayton GD, Clayton FE (1981) Patty’s industrial hygiene and toxicology, 3rd edn. Wiley, New York. ISBN 0-471-16042-3

    Google Scholar 

  76. Ernstgård L, Löf A, Wieslander G, Norbäck D, Johanson G (2007) Acute effects of some volatile organic compounds emitted from water-based paints. J Occup Environ Med 49:880–889

    Article  Google Scholar 

  77. Faroon O, Roney N, Taylor J, Ashizawa A, Lumpkin MH, Plewak DJ (2008) Acrolein health effects. Toxicol Ind Health 24:447–490

    Article  CAS  Google Scholar 

  78. New jersey Department of Health and senior Services Hazardous Substance Fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/1598.pdf

  79. Toxicological Data Network, TOXNET. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+5361

  80. http://www.inchem.org/documents/sids/sids/110623.pdf

  81. IPCS (1993) Benzene. Geneva, World Health Organization, International Programme on Chemical Safety, Environmental Health Criteria 150

    Google Scholar 

  82. Donald JM, Hooper K, Hopenhayn-Rich C (1991) Reproductive and developmental toxicity of toluene: a review. Environ Health Perspect 94:237

    Article  CAS  Google Scholar 

  83. Agency for toxic substance and disease registry. Toxic substances portal-toluene. https://www.atsdr.cdc.gov/phs/phs.asp?id=159&tid=29

  84. The National Institute for Occupational Safety and Health (NIOSH). m-Xylene. Publication No. 2004-149. https://www.cdc.gov/niosh/npg/npgd0669.html

  85. Agency for toxic substance and disease registry. PUBLIC HEALTH STATEMENT Xylene. https://www.atsdr.cdc.gov/phs/phs.asp?id=293&tid=53

  86. The National Institute for Occupational Safety and Health (NIOSH). O-xylene, 22 July 2015. https://www.cdc.gov/niosh/ipcsneng/neng0084.html

  87. National Institute for Occupational Safety and Health (NIOSH) Education and Information Division, 11 Apr 2016. https://www.cdc.gov/niosh/npg/npgd0264.html

  88. Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Toxicological Profile for Ethylbenzene (Update). Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  89. New Jersey department of health and senior services, hazardous substance fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/1607.pdf

  90. Hazardous Substances Data Bank (HSDB) [online database] (2010) Bethesda, MD: National Library of Medicine. http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen?HSDB. [Reference list]

  91. Lim HC (2006) Mothballs: bringing safety issues out from the closet. Singapore Med J 47(11):1003

    CAS  Google Scholar 

  92. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2002) International Agency for Research on Cancer, World Health Organization. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. World Health Organization

    Google Scholar 

  93. Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Public Health Statement, Polycyclic Aromatic Hydrocarbons. Atlanta, GA: U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov/phs/phs.asp?id=120&tid=25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramvir Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soni, V., Singh, P., Shree, V., Goel, V. (2018). Effects of VOCs on Human Health. In: Sharma, N., Agarwal, A., Eastwood, P., Gupta, T., Singh, A. (eds) Air Pollution and Control. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7185-0_8

Download citation

Publish with us

Policies and ethics