Skip to main content

Gasoline Direct Injection Engines and Particulate Emissions

  • Chapter
  • First Online:
Air Pollution and Control

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Gasoline direct injection (GDI) engines are increasingly used in transport sector worldwide in recent years due to the advantages they offer. These include superior fuel economy and better engine response and control due to introduction of electronic control unit (ECU) and high-pressure fuel injection system. One of the main challenges of using GDI engine vehicles is that they emit particulates, which are not an issue in case of multipoint port fuel injection (MPFI) engines. However, there is potential to further improve GDI engines for lower particulate matter (PM) emissions. Particulates from GDI engines are of different sizes such as coarse, fine and ultra-fine, and they also vary in composition and origin. The particulate of different sizes is known to cause adverse health effects. In this chapter, fundamental aspects of both homogeneous and stratified modes of combustion of GDI engines have been discussed, in addition to wall, spray and air-guided GDI engine concepts. A section of the chapter covers detailed comparison of particulate emitted by GDI and MPFI engines. Various size and concentration-based PM measurement techniques and instruments available commercially are included in this chapter. A discussion on influence of engine load, fuel type and spray characteristics on particulate emissions is elaborated towards the end of this chapter in addition to GDI soot morphological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BMEP:

Brake mean effective pressure

Dp:

Diameter of primary soot particle

ECU:

Electronic control unit

EGR:

Exhaust gas recirculation

EGT:

Exhaust gas temperature

ELPI:

Electrical low-pressure impactor

FESEM:

Field emission scanning electron microscope

FIP:

Fuel injection pressure

GDI:

Gasoline direct injection

GPF:

Gasoline particulate filter

HRTEM:

High-resolution transmission electron microscopy

IARC:

International agency for research on cancer

IC:

Internal combustion

ICP-OES:

Inductively coupled plasma optical emission spectrometry

MPFI:

Multipoint port fuel injection

PFI:

Port fuel injection

PM:

Particulate matter

WHO:

World health organization

References

  1. Zhan R, Eakle ST, Weber P (2010) Simultaneous reduction of PM, HC, CO and NOx emissions from a GDI engine. SAE technical paper

    Google Scholar 

  2. Samuel S, Hassaneen A, Morrey D (2010) Particulate matter emissions and the role of catalytic converter during cold start of GDI engine. SAE technical paper

    Google Scholar 

  3. Qin J, Li X, Pei Y (2014) Effects of combustion parameters and lubricating oil on particulate matter emissions from a turbo-charged GDI engine fueled with methanol/gasoline blends. SAE technical paper

    Google Scholar 

  4. Whelan I, Samuel S, Hassaneen A (2010) Investigation into the role of catalytic converters on tailpipe-out nano-scale particulate matter from gasoline direct injection engine. SAE technical paper

    Google Scholar 

  5. Stuart BO (1984) Deposition and clearance of inhaled particles. Environ Health Perspect 55:369

    Article  CAS  Google Scholar 

  6. Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region India. Aerosol Air Qual Res 10:433–445

    CAS  Google Scholar 

  7. Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res Int 20:5615

    Article  CAS  Google Scholar 

  8. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol 16:437–445

    Article  Google Scholar 

  9. Geiger A, Cooper J (2010) Overview of airborne metals regulations, exposure limits, health effects, and contemporary research. US Environ Prot Agency 25:2015 Accessed on August

    Google Scholar 

  10. Organization WWH (2006) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005. WHO/SDE/PHE/OEH

    Google Scholar 

  11. An Y-z, Teng S-p, Pei Y-q, Qin J, Li X, Zhao H (2016) An experimental study of polycyclic aromatic hydrocarbons and soot emissions from a GDI engine fueled with commercial gasoline. Fuel 164:160–171

    Google Scholar 

  12. Cucchi M, Samuel S (2015) Influence of the exhaust gas turbocharger on nano-scale particulate matter emissions from a GDI spark ignition engine. Appl Therm Eng 76:167–174

    Article  CAS  Google Scholar 

  13. Y-z An, Y-q Pei, Qin J, Zhao H, S-p Teng, Li B et al (2016) Development of a PAH (polycyclic aromatic hydrocarbon) formation model for gasoline surrogates and its application for GDI (gasoline direct injection) engine CFD (computational fluid dynamics) simulation. Energy 94:367–379

    Article  Google Scholar 

  14. Zhang Z, Wang T, Jia M, Wei Q, Meng X, Shu G (2014) Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation. Fuel 130:177–188

    Article  CAS  Google Scholar 

  15. Bai Y-l, Wang Z, Wang J-x (2010) Part-load characteristics of direct injection spark ignition engine using exhaust gas trap. Appl Energy 87:2640–2646

    Google Scholar 

  16. Costa M, Marchitto L, Merola S, Sorge U (2014) Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging. Energy 77:88–96

    Article  Google Scholar 

  17. Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K et al (2015) Air pollution and mortality in seven million adults: the dutch environmental longitudinal study (DUELS). Environ Health Perspect 123:697

    Google Scholar 

  18. Organization WH (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide: report on a WHO working group, Bonn, Germany 13–15 Jan 2003

    Google Scholar 

  19. Chen Y, Ebenstein A, Greenstone M, Li H (2013) Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai river policy. Proc Natl Acad Sci 110:12936–12941

    Article  CAS  Google Scholar 

  20. Mohapatra K, Dash C, Dash B (2016) A case study on the impact of particulate matter on health. Carbon 3(1)

    Google Scholar 

  21. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  22. Nemmar A, Hoet PM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts M et al (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    Article  CAS  Google Scholar 

  23. Organization WH (2011) Exposure to air pollution (particulate matter) in outdoor air. Copenhagen, WHO Regional Office for Europe, (ENHIS Factsheet 3.3)

    Google Scholar 

  24. Beelen R, Hoek G, van Den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ et al (2008) Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect 116:196

    Article  Google Scholar 

  25. Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y et al (2009) Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res Rep Health Eff Inst 140:5–114

    Google Scholar 

  26. Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  Google Scholar 

  27. Pope CA III, Ezzati M, Dockery DW (2013) Fine particulate air pollution and life expectancies in the United States: the role of influential observations. J Air Waste Manag Assoc 63:129–132

    Article  CAS  Google Scholar 

  28. Liang B, Ge Y, Tan J, Han X, Gao L, Hao L et al (2013) Comparison of PM emissions from a gasoline direct injected (GDI) vehicle and a port fuel injected (PFI) vehicle measured by electrical low pressure impactor (ELPI) with two fuels: gasoline and M15 methanol gasoline. J Aerosol Sci 57:22–31

    Article  CAS  Google Scholar 

  29. Amaral SS, de Carvalho JA, Costa MAM, Pinheiro C (2015) An overview of particulate matter measurement instruments. Atmosphere 6:1327–1345

    Article  Google Scholar 

  30. Giechaskiel B, Maricq M, Ntziachristos L, Dardiotis C, Wang X, Axmann H et al (2014) Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J Aerosol Sci 67:48–86

    Article  CAS  Google Scholar 

  31. William CH (1982) Aerosol technology. Prop, Behav Measur Airborne Part

    Google Scholar 

  32. Hinds WC (2012) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley

    Google Scholar 

  33. Nussbaumer1a T, Czasch C, Klippel N, Johansson L, Tullin C (2008) Particulate emissions from biomass combustion in IEA countries

    Google Scholar 

  34. Jiang R, Bell ML (2008) A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China. Environ Health Perspect 116:907

    Article  Google Scholar 

  35. Jayne JT, Leard DC, Zhang X, Davidovits P, Smith KA, Kolb CE et al (2000) Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci Technol 33:49–70

    Article  CAS  Google Scholar 

  36. Elsasser M, Crippa M, Orasche J, DeCarlo P, Oster M, Pitz M et al (2012) Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg Germany. Atmos Chem Phys 12:6113–6128

    Article  CAS  Google Scholar 

  37. Kidoguchi Y, Yang C, Miwa K (2000) Effects of fuel properties on combustion and emission characteristics of a direct-injection diesel engine. SAE technical paper

    Google Scholar 

  38. Kidoguchi Y, Yang C, Kato R, Miwa K (2000) Effects of fuel cetane number and aromatics on combustion process and emissions of a direct-injection diesel engine. JSAE Rev 21:469–475

    Article  CAS  Google Scholar 

  39. Kim TY, Lee S, Kang K (2015) Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels. Energy 93:2241–2250

    Article  CAS  Google Scholar 

  40. Chen L, Stone R, Richardson D (2012) Effect of the valve timing and the coolant temperature on particulate emissions from a gasoline direct-injection engine fuelled with gasoline and with a gasoline–ethanol blend. Proc Inst Mech Eng, Part D: J Automobile Eng 226:1419–1430

    Article  CAS  Google Scholar 

  41. Xing J, Shao L, Zheng R, Peng J, Wang W, Guo Q et al (2017) Individual particles emitted from gasoline engines: impact of engine types, engine loads and fuel components. J Clean Prod 149:461–471

    Article  CAS  Google Scholar 

  42. Sharma N, Agarwal AK (2017) Effect of the fuel injection pressure on particulate emissions from a gasohol (E15 and M15)-fueled gasoline direct injection engine. Energy Fuels 31:4155–4164

    Article  CAS  Google Scholar 

  43. Huang H, Liu Q, Wang Q, Zhou C, Mo C, Wang X (2016) Experimental investigation of particle emissions under different EGR ratios on a diesel engine fueled by blends of diesel/gasoline/n-butanol. Energy Convers Manag 121:212–223

    Article  CAS  Google Scholar 

  44. Kumar BR, Saravanan S, Rana D, Anish V, Nagendran A (2016) Effect of a sustainable biofuel–n-octanol–on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Energy Convers Manag 118:275–286

    Article  Google Scholar 

  45. Su J, Lin W, Sterniak J, Xu M, Bohac SV (2014) Particulate matter emission comparison of spark ignition direct injection (SIDI) and port fuel injection (PFI) operation of a boosted gasoline engine. J Eng Gas Turbines Power 136:091513

    Article  Google Scholar 

  46. Alger T, Gingrich J, Roberts C, Mangold B (2011) Cooled exhaust-gas recirculation for fuel economy and emissions improvement in gasoline engines. Int J Engine Res 12:252–264

    Article  CAS  Google Scholar 

  47. Zhao L, Yu X, Qian D, Dong W, Sun P, He L et al (2013) The effects of EGR and ignition timing on emissions of GDI engine. Sci China Technol Sci 56:3144–3150

    Article  CAS  Google Scholar 

  48. Bozza F, De Bellis V, Teodosio L (2016) Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines. Appl Energy 169:112–125

    Article  Google Scholar 

  49. Liati A, Schreiber D, Eggenschwiler PD, Dasilva YAR, Spiteri AC (2016) Electron microscopic characterization of soot particulate matter emitted by modern direct injection gasoline engines. Combust Flame 166:307–315

    Article  CAS  Google Scholar 

  50. Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29:575–588

    Article  CAS  Google Scholar 

  51. Preussner C, Döring C, Fehler S, Kampmann S (1998) GDI: interaction between mixture preparation, combustion system and injector performance. SAE technical paper

    Google Scholar 

  52. Baldacci S, Maio S, Cerrai S, Sarno G, Baïz N, Simoni M et al (2015) Allergy and asthma: effects of the exposure to particulate matter and biological allergens. Respir Med 109:1089–1104

    Article  CAS  Google Scholar 

  53. Donaldson K, Gilmour M, MacNee W (2000) Asthma and PM 10. Respir Res 1:12

    Article  CAS  Google Scholar 

  54. Ulrich MM, Alink GM, Kumarathasan P, Vincent R, Boere AJF, Cassee FR (2002) Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation. J Toxicol Environ Health Part A 65:1571–1595

    Article  CAS  Google Scholar 

  55. Künzli N, Tager I (2005) Air pollution: from lung to heart. Swiss Med Wkly 135:697–702

    Google Scholar 

  56. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV et al (2010) Particulate matter air pollution and cardiovascular disease. Circulation 121:2331–2378

    Article  CAS  Google Scholar 

  57. DeFranco E, Moravec W, Xu F, Hall E, Hossain M, Haynes EN et al (2016) Exposure to airborne particulate matter during pregnancy is associated with preterm birth: a population-based cohort study. Environ Health 15:6

    Article  Google Scholar 

  58. Rappazzo KM, Daniels JL, Messer LC, Poole C, Lobdell DT (2014) Exposure to fine particulate matter during pregnancy and risk of preterm birth among women in New Jersey, Ohio, and Pennsylvania, 2000–2005. Environ Health Perspect 122:992–997

    Google Scholar 

  59. Sapkota A, Chelikowsky AP, Nachman KE, Cohen AJ, Ritz B (2012) Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual Atmos Health 5:369–381

    Article  CAS  Google Scholar 

  60. Organization WH (2014) Ambient (outdoor) air quality and health. Fact Sheet 313

    Google Scholar 

  61. Chowdhury S, Dey S (2016) Cause-specific premature death from ambient PM 2.5 exposure in India: estimate adjusted for baseline mortality. Environ Int 91:283–290

    Article  CAS  Google Scholar 

  62. Du Y, Xu X, Chu M, Guo Y, Wang J (2016) Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 8:E8

    Google Scholar 

  63. Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D et al (2004) Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation 109:71–77

    Article  Google Scholar 

  64. Araujo JA, Nel AE (2009) Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol 6:24

    Article  Google Scholar 

  65. Sun Q, Hong X, Wold LE (2010) Cardiovascular effects of ambient particulate air pollution exposure. Circulation 121:2755–2765

    Article  Google Scholar 

  66. Xing Y-F, Xu Y-H, Shi M-H, Lian Y-X (2016) The impact of PM2. 5 on the human respiratory system. J Thorac Dis 8:E69

    Google Scholar 

  67. Franchini M, Mannucci PM (2012) Air pollution and cardiovascular disease. Thromb Res 129:230–234

    Article  CAS  Google Scholar 

  68. Medina-Ramón M, Zanobetti A, Schwartz J (2006) The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol 163:579–588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kumar Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Agarwal, A.K. (2018). Gasoline Direct Injection Engines and Particulate Emissions. In: Sharma, N., Agarwal, A., Eastwood, P., Gupta, T., Singh, A. (eds) Air Pollution and Control. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7185-0_6

Download citation

Publish with us

Policies and ethics