Advertisement

A Study on Evolution and Modelling of Soot Formation in Diesel Jet Flames

  • M. UdayakumarEmail author
  • N. H. Mohamed Ibrahim
Chapter
  • 1.5k Downloads
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Soot emitted by diesel engines causes severe urban air pollution in the form of smog. Particularly in cities like New Delhi in India, smog presents a health risk for millions of people. To counter this problem diesel engines are to be designed with combustion systems which can minimize smoke formation, and if possible cheap and effective exhaust treatment devices are to be fitted in the exhaust of these engines. Hence, understanding of the chemistry and physical events in the soot formation is the starting point in solving this problem. Particularly, the soot formation studies on high-pressure diffusion flames burners issuing turbulent hydrocarbon fuel jets are relevant for this study. In this article, the various theories associated with the soot formation like soot inception, coagulation, agglomeration, oxidation are discussed. Also, the results of the numerical studies carried out by the authors on diesel-air flames at laboratory conditions are briefly presented.

Nomenclature

\( \bar{\rho } \)

Mean density

µ

Viscosity of the mixture

\( \bar{\omega }_{k} \)

Chemical production rate of species k

\( \bar{\tau }_{ij} \)

Viscous stress tensor

\( \mu_{k} \)

Viscosity of species k

\( \sigma_{k} \)

Constant in the k-Ɛ turbulence model

\( \sigma_{\epsilon} \)

Constant in the k-Ɛ turbulence model

\( C_{\varepsilon 1} \)

Constant in the k-Ɛ turbulence model

\( C_{\varepsilon 2} \)

Constant in the k-Ɛ turbulence model

\( C_{\mu } \)

Constant in the k-Ɛ turbulence model

\( {\tilde{\varepsilon }} \)

Rate of dissipation of turbulence energy

\( \tilde{k} \)

Turbulence kinetic energy

µt

Eddy viscosity

Pk

Production rate of turbulence kinetic energy

\( \tilde{Q} \)

Production rate of thermal energy

µeff

Effective viscosity

ΰ

Cartesian velocity component

P

Pressure

NA

Avogadro’s number

hk

Specific enthalpy of species k

Superscripts

Product, fluctuating value, density-weighted averaging

-

Mean

Reactant, fluctuating value, averaged

~

Density-weighted mean

References

  1. 1.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H (2012) Lancet 380:2224–2260CrossRefGoogle Scholar
  2. 2.
    Al-Omari S-AB, Kawajiri K, Yonesawa T (2001) Soot processes in a methane-fuelled furnace and their pact on radiation heat transfer to furnace walls. Int J Heat Mass Tran 44(13):2567–2581CrossRefGoogle Scholar
  3. 3.
    Kennedy IM (1997) Models of soot formation and oxidation. Prog Energy Combust 23:95–132CrossRefGoogle Scholar
  4. 4.
    Harris SJ, Weiner AM (1985) Annu Rev Phys Chem 36:31–52CrossRefGoogle Scholar
  5. 5.
    Haynes BS, Wagner HG (1981) Prog Energy Combust Sci 7:229–273CrossRefGoogle Scholar
  6. 6.
    Frenklach M, Wang H (1991) Proc Combust Inst 23:1559–1566CrossRefGoogle Scholar
  7. 7.
    Haynes BS, Wagner HG, Phys Z (1982) Chem N F 133:201–213CrossRefGoogle Scholar
  8. 8.
    Heywood JB (1988) Internal combustion engine fundamentals. In: McGraw-Hill series in mechanical engineering. McGraw-Hill, New YorkGoogle Scholar
  9. 9.
    Prado G, Lahaye J (1981) Physical aspects of nucleation and growth of soot particles. In: Siegla DC, Smith GW (eds) Particulate carbon formation during combustion. Plenum Press, New York, pp 143–176Google Scholar
  10. 10.
    Smyth KC, Miller JH (1987) Chemistry of molecular growth processes in flames. Science 236:1540–1546CrossRefGoogle Scholar
  11. 11.
    Parker WG, Wolfhard HG (1950) Carbon formation in flames. J Chem Soc 2038–2049Google Scholar
  12. 12.
    Milberg ME (1959) Carbon formation in an acetylene air diffusion flame. J Phys Chem 63:578–582CrossRefGoogle Scholar
  13. 13.
    Schalla RL, McDonald GE (1955) Mechanism of smoke formation in diffusion flames. Proc Combust Inst 5:316–324CrossRefGoogle Scholar
  14. 14.
    Macfarlane JJ, Holderness FH, Whitcher FSE (1964) Soot formation rates in premixed C5 and C6 hydrocarbon air flames at pressures up to 20 atmospheres. Combust Flame 8:215–229CrossRefGoogle Scholar
  15. 15.
    Flower WL, Bowman CT (1984) Measurements of the effect of elevated pressure on soot formation in laminar diffusion flames. Combust Sci Technol 37:93–97CrossRefGoogle Scholar
  16. 16.
    Kim CH, Xu F, Faeth GM (2008) Soot surface growth and oxidation at pressures up to 8.0 atm. in laminar non-premixed and partially premixed flames. Combust Flame 152:301–316CrossRefGoogle Scholar
  17. 17.
    Milberg ME (1959) Carbon formation in an acetylene air diffusion flame. J Phys Chem 63:578–582CrossRefGoogle Scholar
  18. 18.
    Prado G, Lahaye J (1981) Physical aspects of nucleation and growth of soot particles. In: Siegla DC, Smith GW (eds) Particulate carbon formation during combustion. Plenum Press, New York, pp 143–176Google Scholar
  19. 19.
    Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037CrossRefGoogle Scholar
  20. 20.
    Callear AB, Smith GB (1984) The addition of atomic hydrogen to acetylene chain reactions of the vinyl radical. Chem Phys Lett 105(1):119–122CrossRefGoogle Scholar
  21. 21.
    Prado G, Lahaye J (1981) Physical aspects of nucleation and growth of soot particles. In: Siegla DC, Smith GW (eds) Particulate carbon formation during combustion. Plenum Press, New York, pp 143–176Google Scholar
  22. 22.
    Frenklach M, Clary DW, Gardiner WC, Stein SE (1985) Detailed kinetic modelling of soot formation in shock-tube pyrolysis of acetylene. Proc Comb Inst 20:887–901CrossRefGoogle Scholar
  23. 23.
    Frenklach M, Yuan T, Ramachandra MK (1988) Soot formation in binary hydrocarbonmixtures. Energy Fuels 2:462–480CrossRefGoogle Scholar
  24. 24.
    Miller JA, Pilling MJ, Troe J (2005) Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc Comb Inst 30:43–88CrossRefGoogle Scholar
  25. 25.
    Melius CF, Colvin ME, Marinov NM, Pitz WJ, Senkan SM (1996) Reactionmechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety. Proc Comb Inst 26:685–692CrossRefGoogle Scholar
  26. 26.
    Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Proc Comb Inst 23:1559–1566CrossRefGoogle Scholar
  27. 27.
    Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037CrossRefGoogle Scholar
  28. 28.
    Haynes BS, Wagner HG (1981) Soot formation. Prog Energy Combust Sci 7:229–273CrossRefGoogle Scholar
  29. 29.
    Neoh KG, Howard JB, Sarofim AF (1981) Particulate carbon formation during combustion, vol 261. Plenum Press, New YorkGoogle Scholar
  30. 30.
    Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Proc Comb Inst 23:1559–1566CrossRefGoogle Scholar
  31. 31.
    Frenklach M, Ebert LB (1988) Comment on the proposed role of spheroidal carbon clusters in soot formation. J Phys Chem 92:561–563CrossRefGoogle Scholar
  32. 32.
    Miller JH (1990) The kinetics of polynuclear aromatic hydrocarbon agglomeration in flames. Proc Comb Inst 23:91CrossRefGoogle Scholar
  33. 33.
    Frenklach M, Clary DW, Gardiner WC, Stein SE (1985) Detailed kinetic modelling of soot formation in shock-tube pyrolysis of acetylene. Proc Comb Inst 20:887–901CrossRefGoogle Scholar
  34. 34.
    Warnatz J, Maas U, Dibble RW (2006) Physical and chemical fundamentals, modelling and simulation, experiments, pollutant formation, 4th edn. Springer, BerlinGoogle Scholar
  35. 35.
    Frenklach M, Wang H (1990) Detailed kinetic modelling of soot particle nucleation and growth. Proc Comb Inst 23:1559–1566CrossRefGoogle Scholar
  36. 36.
    Harris SJ, Weiner AM (1983) The surface growth of soot particles in premixed ethylene air flames. Combust Sci Technol 31:155–167CrossRefGoogle Scholar
  37. 37.
    Smoluchowski MV (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Loesungen. Z Phys Chem 92:129–168Google Scholar
  38. 38.
    Graham SC (1976) The collisional growth of soot particles at high temperatures. Proc Comb Inst 16:663–669CrossRefGoogle Scholar
  39. 39.
    Neoh KG, Howard JB, Sarofim AF (1985) Effect of oxidation on the physical structure of soot. Proc Comb Inst 20:951–957CrossRefGoogle Scholar
  40. 40.
    Lucht RP, Sweeney DW, Laurendeau NM (1985) Laser-saturated fluorescence measurements of hydroxyl radical in atmospheric pressure methane/oxygen/nitrogen flames under sooting and non-sooting conditions. Comb Sci Technol 42:259–281CrossRefGoogle Scholar
  41. 41.
    Eckbreth AC (1988) Laser diagnostics for combustion temperature and species, 1st edn. Abacus Press, CambridgeGoogle Scholar
  42. 42.
    Fristrom RM (1976) Probe measurements in laminar combustion systems. In: Goulard R (ed) Combustion measurements: modern techniques and instrumentation. Academic Press, New York, pp 287–317Google Scholar
  43. 43.
    Clark HR, Stawicki RP, Smyth IP, Potkay E (1990) Collection and characterization of soot from an optical fiber preform torch. J Am Ceram Soc 73:2987–2991CrossRefGoogle Scholar
  44. 44.
    Maricq MM (2009) Electrical mobility based characterization of bimodal soot size distributions in rich premixed flames. In: Bockhorn H, D’Anna A, Sarofim AF, Wang H (eds) Combustion generated fine carbonaceous particles(proceedings of an international workshop held in Villa Orlandi, Anacapri, 13–16 May 2007). KIT Scientific Publishing, pp 347–366Google Scholar
  45. 45.
    Modest MF (2003) Radiative heat transfer, 2nd edn. Academic Press, BostonGoogle Scholar
  46. 46.
    Santoro RJ, Shaddix CR (2002) Laser induced incandescence. In: Kohse-Höinghaus K, Jefries B (eds) Applied combustion diagnostics. Taylor & Francis, pp 252–286Google Scholar
  47. 47.
    Brookes SJ, Moss JB (1999) Combust Flame 116:486CrossRefGoogle Scholar
  48. 48.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Computer Methods in Appl Mech Eng 3:269–289CrossRefGoogle Scholar
  49. 49.
    Leung KM, Lindstedt RP, Jones WP (1991) Combust Flame 87:289CrossRefGoogle Scholar
  50. 50.
    Puri R, Richardson TF, Santoro RJ (1993) Combust Flame 92:320CrossRefGoogle Scholar
  51. 51.
    Frenklach M (2002) Reaction mechanism of soot formation in flames. Physical Chemistry 407. Chem Phys 4(11):2028–2037Google Scholar
  52. 52.
    Lee KB, Thring MW, Beer JM (1962) Combust Flame 6:137–145CrossRefGoogle Scholar
  53. 53.
    Jones WP, Launder BE (1972) The prediction 432 of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314CrossRefGoogle Scholar
  54. 54.
    Wen et al (2003) Modelling soot formation. Combust Flame 135:323–340CrossRefGoogle Scholar
  55. 55.
    Puri R, Richardson TF, Santoro RJ (1993) Combust Flame 92:320CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations