Skip to main content

Extreme Learning Machine Based on Evolutionary Multi-objective Optimization

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

Abstract

Extreme learning machine (ELM), which proposed for generalized single-hidden layer feedforward neural networks, has become a popular research topic due to its fast learning speed, good generalization ability, and ease of implementation. However, ELM faces redundancy and randomness in the hidden layer which caused by random mapping of features. In ELM, although evolutionary algorithms have archived impressive improvement, they have not considered the sparsity of the hidden layers. In this paper, a hybrid learning algorithm is proposed, termed EMO-ELM, which adopts evolutionary multi-objective algorithm to optimise two conflict objectives simultaneously. Furthermore, the proposed method can be used for supervised classification and unsupervised sparse feature extraction tasks. Simulations on many UCI datasets have demonstrated that EMO-ELM generally outperforms the original ELM algorithm as well as several ELM variants in classification tasks, moreover, EMO-ELM achieves a competitive performance to PCA in sparse feature extraction tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets.html.

References

  1. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)

    Article  MathSciNet  Google Scholar 

  2. Huang, G.B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17(4), 879–892 (2006)

    Article  Google Scholar 

  3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  4. Minhas, R., Baradarani, A., Seifzadeh, S., Wu, Q.J.: Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing 73(10), 1906–1917 (2010)

    Article  Google Scholar 

  5. Zong, W., Huang, G.B.: Face recognition based on extreme learning machine. Neurocomputing 74(16), 2541–2551 (2011)

    Article  Google Scholar 

  6. Zeng, Y., Xu, X., Shen, D., Fang, Y., Xiao, Z.: Traffic sign recognition using kernel extreme learning machines with deep perceptual features. IEEE Trans. Intell. Transp. Syst. (2016)

    Google Scholar 

  7. Chen, C., Li, W., Su, H., Liu, K.: Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014)

    Article  Google Scholar 

  8. Pal, M., Maxwell, A.E., Warner, T.A.: Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 4(9), 853–862 (2013)

    Article  Google Scholar 

  9. Lv, Q., Niu, X., Dou, Y., Xu, J., Lei, Y.: Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine. IEEE Geosci. Remote Sens. Lett. 13(3), 434–438 (2016)

    Google Scholar 

  10. Savojardo, C., Fariselli, P., Casadio, R.: Betaware: a machine-learning tool to detect and predict transmembrane beta barrel proteins in prokaryotes. Bioinformatics, bts728 (2013)

    Google Scholar 

  11. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)

    Article  Google Scholar 

  12. Huang, G.B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014)

    Article  Google Scholar 

  13. Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66–77 (2012)

    Article  MathSciNet  Google Scholar 

  14. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Signal Process. Lett. 17(8), 754–757 (2010)

    Article  Google Scholar 

  15. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)

    Article  MATH  Google Scholar 

  16. Cao, J., Lin, Z., Huang, G.B.: Self-adaptive evolutionary extreme learning machine. Neural Process. Lett. 36, 1–21 (2012)

    Article  Google Scholar 

  17. Li, K.E., Wang, R.A.N., Kwong, S.A.M., Cao, J.: Evolving extreme learning machine paradigm with adaptive operator selection and parameter control. Int. J. Uncert. Fuzz. Knowl.-Based Syst. 21(Suppl. 02), 143–154 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y., Wu, J., Cai, Z., Zhang, P., Chen, L.: Memetic extreme learning machine. Pattern Recogn. 58, 135–148 (2016)

    Article  Google Scholar 

  19. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)

    Article  Google Scholar 

  20. Pan, L., He, C., Tian, Y., Su, Y., Zhang, X.: A region division based diversity maintaining approach for many-objective optimization. Integr. Comput.-Aided Eng. (Preprint), 1–18 (2017)

    Google Scholar 

  21. Gu, S., Cheng, R., Jin, Y.: Multi-objective ensemble generation. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 5(5), 234–245 (2015)

    Article  Google Scholar 

  22. Liu, J., Gong, M., Miao, Q., Wang, X., Li, H.: Structure learning for deep neural networks based on multiobjective optimization. IEEE Trans. Neural Netw. Learn. Syst. (2017)

    Google Scholar 

  23. Gong, M., Liu, J., Li, H., Cai, Q., Su, L.: A multiobjective sparse feature learning model for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3263–77 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mao, W., Tian, M., Cao, X., Xu, J.: Model selection of extreme learning machine based on multi-objective optimization. Neural Comput. Appl. 22(3–4), 521–529 (2013)

    Article  Google Scholar 

  25. Huang, G.B.: What are extreme learning machines? filling the gap between frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn. Comput. 7(3), 263–278 (2015)

    Article  Google Scholar 

  26. Kasun, L.L.C., Yang, Y., Huang, G.B., Zhang, Z.: Dimension reduction with extreme learning machine. IEEE Trans. Image Process. 25(8), 3906–3918 (2016)

    Article  MathSciNet  Google Scholar 

  27. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chao, T., Hongbo, P., Yansheng, L., Zhengrou, Z.: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2438–2442 (2015)

    Article  Google Scholar 

  29. Rachmawati, L., Srinivasan, D.: Multiobjective evolutionary algorithm with controllable focus on the knees of the pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)

    Article  Google Scholar 

  30. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

We thank the reviewers for their valuable comments and suggestions. This work was partially supported by the National Natural Science Foundation of China under grant No. 61603355 and No. 61403351, and the Fundamental Research Funds for National University, China University of Geosciences (Wuhan) under grant No. G1323541717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Y. et al. (2017). Extreme Learning Machine Based on Evolutionary Multi-objective Optimization. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics