Skip to main content

An Approach to the Bio-Inspired Control of Self-reconfigurable Robots

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

Abstract

Self-reconfigurable robots are robots built by modules which can move in relationship to each other. This ability of changing its physical form provides the robots a high level of adaptability and robustness. Given an initial configuration and a goal configuration of the robot, the problem of self-regulation consists on finding a sequence of module moves that will reconfigure the robot from the initial configuration to the goal configuration. In this paper, we use a bio-inspired method for studying this problem which combines a cluster-flow locomotion based on cellular automata together with a decentralized local representation of the spatial geometry based on membrane computing ideas. A promising 3D software simulation and a 2D hardware experiment are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since there are an extensive literature on the use of CA for the control of self-reconfigurable robots, we focus on the membrane computing ideas used in this paper.

  2. 2.

    These ideas has been previously used in membrane computing, see [13, 21, 23]. Different approaches bridging membrane computing with other geometric problems can be found in [3, 4] or [16].

  3. 3.

    A detailed description of the cluster-flow locomotion is out of the scope of this paper. A good introduction can be found, e.g., in [8] or [11].

  4. 4.

    See [35] for the technical details on the strategy for the maintenance of the global connection during the locomotion.

  5. 5.

    More details about the mechanical and electrical structure can be found at [6].

References

  1. Abelson, H., DiSessa, A.A.: Turtle Geometry: The Computer as a Medium for Exploring Mathematics. MIT Press, Cambridge (1986)

    Google ScholarĀ 

  2. Baca, J., Woosley, B., Dasgupta, P., Nelson, C.A.: Configuration discovery of modular self-reconfigurable robots: real-time, distributed, Ir+XbEe communication method. Robot. Auton. Syst. 91, 284ā€“298 (2017)

    ArticleĀ  Google ScholarĀ 

  3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simulation of Spatial P System Models. Theor. Comput. Sci. 529, 11ā€“45 (2014)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P systems. Nat. Comput. 10(1), 3ā€“16 (2011)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  5. Bie, D., GutiƩrrez-Naranjo, M.A., Zhao, J., Zhu, Y.: A Membrane Computing Framework for Self-Reconfigurable Robots (submitted)

    Google ScholarĀ 

  6. Bie, D., Zhu, Y., Wang, X., Zhang, Y., Zhao, J.: L-systems driven self-reconfiguration of modular robots. Int. J. Adv. Robot. Syst. 13(5), 1ā€“12 (2016)

    ArticleĀ  Google ScholarĀ 

  7. Bojinov, H., Casal, A., Hogg, T.: Multiagent control of self-reconfigurable robots. Artif. Intell. 142(2), 99ā€“120 (2002)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  8. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for a class of self-reconfigurable robots. In: IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 1, pp. 809ā€“816 (2002)

    Google ScholarĀ 

  9. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Cellular automata for decentralized control of self-reconfigurable robots. In: IEEE ICRA Workshop on Modular Robots, pp. 21ā€“26 (2001)

    Google ScholarĀ 

  10. Butler, Z.J., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919ā€“937 (2004)

    ArticleĀ  Google ScholarĀ 

  11. Fitch, R., Butler, Z.J.: Scalable locomotion for large self-reconfiguring robots. In: IEEE International Conference on Robotics and Automation, pp. 2248ā€“2253 (2007)

    Google ScholarĀ 

  12. Fukuda, T., Nakagawa, S.: Approach to the dynamically reconfigurable robotic system. J. Intell. Robot. Syst. 1(1), 55ā€“72 (1988)

    ArticleĀ  Google ScholarĀ 

  13. Georgiou, A., Gheorghe, M., Bernardini, F.: Membrane-based devices used in computer graphics. In: Ciobanu, G., Păun, G., PĆ©rez-JimĆ©nez, M.J. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 253ā€“281. Springer, Heidelberg (2006)

    Google ScholarĀ 

  14. Hou, F., Shen, W.: Graph-based optimal reconfiguration planning for self-reconfigurable robots. Robot. Auton. Syst. 62(7), 1047ā€“1059 (2014)

    ArticleĀ  Google ScholarĀ 

  15. Lakhlef, H., Bourgeois, J., Mabed, H., Goldstein, S.C.: Energy-aware parallel self-reconfiguration for chains microrobot networks. J. Parallel Distrib. Comput. 75, 67ā€“80 (2015)

    ArticleĀ  Google ScholarĀ 

  16. Margenstern, M.: Can hyperbolic geometry be of help for P systems? In: MartĆ­n-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 240ā€“249. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24619-0_18

    ChapterĀ  Google ScholarĀ 

  17. Perez-Diaz, F., Zillmer, R., GroƟ, R.: Control of synchronization regimes in networks of mobile interacting agents. Phys. Rev. Appl. 7, 054002 (2017)

    ArticleĀ  Google ScholarĀ 

  18. Prusinkiewicz, P.: Graphical applications of L-systems. In: Proceedings on Graphics Interface 1986/Vision Interface 1986, pp. 247ā€“253. Canadian Information Processing Society, Toronto (1986)

    Google ScholarĀ 

  19. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Virtual Laboratory. Springer, New York (1990)

    BookĀ  MATHĀ  Google ScholarĀ 

  20. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATHĀ  Google ScholarĀ 

  21. Rivero-Gil, E., GutiĆ©rrez-Naranjo, M.A., Romero JimĆ©nez, Ɓ., Riscos-NĆŗƱez, A.: A software tool for generating graphics by means of P systems. Nat. Comput. 10(2), 879ā€“890 (2011)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  22. Romanishin, J.W., Gilpin, K., Claici, S., Rus, D.: 3D M-blocks: self-reconfiguring robots capable of locomotion via pivoting in three dimensions. In: IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26ā€“30 May 2015, pp. 1925ā€“1932. IEEE (2015)

    Google ScholarĀ 

  23. Romero-JimĆ©nez, A., GutiĆ©rrez-Naranjo, M.A., PĆ©rez-JimĆ©nez, M.J.: Graphical modeling of higher plants using P systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 496ā€“506. Springer, Heidelberg (2006). https://doi.org/10.1007/11963516_31

    ChapterĀ  Google ScholarĀ 

  24. Stoy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54(2), 135ā€“141 (2006)

    ArticleĀ  Google ScholarĀ 

  25. Stoy, K.: Lattice automata for control of self-reconfigurable robots. In: Sirakoulis, G.C., Adamatzky, A. (eds.) Robots and Lattice Automata. ECC, vol. 13, pp. 33ā€“45. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10924-4_2

    Google ScholarĀ 

  26. Stoy, K., Brandt, D., Christensen, D.J.: Self-Reconfigurable Robots: An Introduction. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2010)

    Google ScholarĀ 

  27. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent. Multi-Ag. 30(3), 553ā€“580 (2016)

    ArticleĀ  Google ScholarĀ 

  28. Vergara, A., Lau, Y.S., Mendoza-Garcia, R.F., Zagal, J.C.: Soft modular robotic cubes: toward replicating morphogenetic movements of the embryo. Plos One 12(1), 1ā€“17 (2017)

    ArticleĀ  Google ScholarĀ 

  29. Wang, X., Jin, H., Zhu, Y., Chen, B., Bie, D., Zhang, Y., Zhao, J.: Serpenoid polygonal rolling for chain-type modular robots: a study of modeling, pattern switching and application. Robot. Cim-Int. Manuf. 39, 56ā€“67 (2016)

    ArticleĀ  Google ScholarĀ 

  30. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading (1994)

    MATHĀ  Google ScholarĀ 

  31. Yang, Z., Wu, Y., Fu, Z., Fei, J., Zheng, H.: A unit-compressible modular robotic system and its self-configuration strategy using meta-module. Robot. Cim-Int. Manuf. 49, 39ā€“53 (2018)

    ArticleĀ  Google ScholarĀ 

  32. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43ā€“52 (2007)

    ArticleĀ  Google ScholarĀ 

  33. Zhang, Y., Song, G., Liu, S., Qiao, G., Zhang, J., Sun, H.: A modular self-reconfigurable robot with enhanced locomotion performances: design, modeling, simulations, and experiments. J. Intell. Robot. Syst. 81(3ā€“4), 377ā€“393 (2016)

    ArticleĀ  Google ScholarĀ 

  34. Zhao, J., Wang, X., Jin, H., Bie, D., Zhu, Y.: Automatic locomotion generation for a ubot modular robot-towards both high-speed and multiple patterns. Int. J. Adv. Robot. Syst. 12, 32 (2015)

    ArticleĀ  Google ScholarĀ 

  35. Zhu, Y., Bie, D., Iqbal, S., Wang, X., Gao, Y., Zhao, J.: A simplified approach to realize cellular automata for ubot modular self-reconfigurable robots. J. Intell. Robot. Syst. 79(1), 37ā€“54 (2015)

    ArticleĀ  Google ScholarĀ 

  36. https://sites.google.com/site/modularrobots/cycling

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 61673137) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51521003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhe Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bie, D., GutiƩrrez-Naranjo, M.A., Zhao, J., Zhu, Y. (2017). An Approach to the Bio-Inspired Control of Self-reconfigurable Robots. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics