Skip to main content

Cell-Like P Systems with Symport/Antiport Rules and Promoters

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

  • 1103 Accesses

Abstract

Cell-like P systems with symport/antiport rules (CSA P systems, for short) are a class of computational models in membrane computing, inspired by the way of transmembrane transport of substances through membrane channels between neighboring regions in a cell. In this work, we propose a variant of CSA P systems called cell-like P systems with symport/antiport rules and promoters (CSAp P systems, for short), where symport/antiport rules are regulated by multisets of promoters, and the computation power of CSAp P systems is investigated. Specifically, it is proved that CSAp P systems working in the maximally parallel mode, having any large number of membranes and promoters and using only symport rules of length 1 or antiport rules of length 2, are able to compute only finite sets of non-negative integers. Furthermore, we show that CSAp P systems with two membranes working in a sequential mode when having at most two promoters and using only symport rules of length 2, or having at most one promoter and using symport rules of length 1 and antiport rules of length 2, are Turing universal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhazov, A., Rogozhin, Y.: Minimal cooperation in symport/antiport P systems with one membrane. In: Proceedings of the Third Brainstorming Week on Membrane Computing, pp. 29–34. Sevilla (2005)

    Google Scholar 

  2. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 66–85. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14370-5_5

    Chapter  Google Scholar 

  3. Bottoni, P., Martín-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with promoters/inhibitors. Act. Inform. 38, 695–720 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of Membrane Computing. Springer, Berlin (2005)

    Book  Google Scholar 

  5. Ciobanu, G., Pan, L., Păun, G.: P systems with minimal parallelism. Theor. Comput. Sci. 378(1), 117–130 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Independent set problem by using tissue-like P systems with cell division. In: Mira, J., Ferrández, J.M., Álvarez, J.R., Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5601, pp. 213–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02264-7_23

    Chapter  Google Scholar 

  7. Dassow, J., Păun, G.: On the power of membrane computing. J. Univ. Comput. Sci. 5(2), 33–49 (1999)

    MathSciNet  Google Scholar 

  8. Frisco, P., Govan, G., Leporati, A.: Asynchronous P systems with active membranes. Theor. Comput. Sci. 429, 74–86 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freund, R., Oswald, M.: Modelling grammar systems by tissue P systems working in the sequential mode. Fund. Inform. 76, 305–323 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Freund, R., Ibarra, O.H., Păun, G. (eds.): Matrix languages, register machines, vector addition systems. In: The 3rd Brainstorming Week Membrane Computing, pp. 155–168 (2005)

    Google Scholar 

  11. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fund. Inform. 71(2–3), 279–308 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Jiang, K., Pan, L.: Spiking neural P systems with anti-spikes working in sequential mode induced by maximum spike number. Neurocomputing 171, 1674–1683 (2016)

    Article  Google Scholar 

  13. Korec, I.: Small universal register machines. Theor. Comput. Sci. 168(2), 267–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Shallow Non-confluent P systems. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 307–316. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54072-6_19

    Chapter  Google Scholar 

  15. Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood-Cliffs (1967)

    MATH  Google Scholar 

  17. Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Gener. Comput. 20(3), 295–305 (2002)

    Article  MATH  Google Scholar 

  18. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000). Also in Turku Center for Computer Science-TUCS, Report 208, November 1998

    Article  MATH  MathSciNet  Google Scholar 

  19. Păun, G., Păun, R.: Membrane computing and economics: numerical P systems. Fund. Inform. 72(1–2), 213–227 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, New York (2010)

    Book  MATH  Google Scholar 

  21. Păun, G.: Membrane Computing: An Introduction. Springer Science & Business Media, Berlin (2002)

    Book  MATH  Google Scholar 

  22. Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An unsupervised learning algorithm for membrane computing. Inf. Sci. 304, 80–91 (2015)

    Article  MATH  Google Scholar 

  23. Peng, H., Wang, J., Shi, P., Riscos-Núñez, A., Pérez-Jiménez, M.J.: An automatic clustering algorithm inspired by membrane computing. Pattern Recogn. Lett. 68, 34–40 (2015)

    Article  Google Scholar 

  24. Pan, L., Păun, G., Song, B.: Flat maximal parallelism in P systems with promoters. Theor. Comput. Sci. 623, 83–91 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pan, L., Wang, Y., Jiang, S., Song, B.: Flat maximal parallelism in tissue P systems with promoters. Rom. J. Inf. Sci. Technol. 20(1), 42–56 (2017)

    Google Scholar 

  26. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1. Springer, Berlin (1997)

    MATH  Google Scholar 

  27. Song, B., Pan, L., Pérez-Jiménez, M.J.: Cell-like P systems with channel states and symport/antiport rules. IEEE Trans. Nanobiosci. 15(6), 555–566 (2016)

    Article  Google Scholar 

  28. Song, B., Pan, L.: The computational power of tissue-like P systems with promoters. Theor. Comput. Sci. 641, 43–52 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  29. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. Nanobiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  30. Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193, 193–200 (2016)

    Article  Google Scholar 

  31. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. Nanobios. 14(1), 38–44 (2016)

    Article  Google Scholar 

  32. Song, B., Pérez-Jiménez, M.J., Pan, L.: Efficient solutions to hard computational problems by P systems with symport/antiport rules and membrane division. BioSystems 130, 51–58 (2015)

    Article  Google Scholar 

  33. Song, B., Pérez-Jiménez, M.J., Pan, L.: An efficient time-free solution to SAT problem by P systems with proteins on membranes. J. Comput. Syst. Sci. 82, 1090–1099 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  34. Song, B., Pérez-Jiménez, M.J., Pan, L.: An efficient time-free solution to QSAT problem using P systems with proteins on membranes. Inf. Comput. Sci. 529, 61–68 (2014). https://doi.org/10.1016/j.ic.2017.06.005

    MATH  Google Scholar 

  35. Song, B., Zhang, C., Pan, L.: Tissue-like P systems with evolutional symport/antiport rules. Inf. Sci. 378, 177–193 (2017)

    Article  MathSciNet  Google Scholar 

  36. Wang, J., Shi, P., Peng, H.: Membrane computing model for IIR filter design. Inf. Sci. 329, 164–176 (2016)

    Article  Google Scholar 

  37. Wu, T., Zhang, Z., Păun, G., Pan, L.: Cell-like spiking neural P systems. Theor. Comput. Sci. 623, 180–189 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zandron, C., Leporati, A., Ferretti, C.: On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fund. Inform. 87(1), 79–91 (2008)

    MATH  MathSciNet  Google Scholar 

  39. Zhang, G., Gheorghe, M., Pérez-Jiménez, M.J.: Real-Life Applications with Membrane Computing. Springer, Berlin (2016)

    Google Scholar 

  40. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Data modeling with membrane systems: applications to real ecosystems. Real-life Appl. Membr. Comput. 25, 259–355 (2017)

    Google Scholar 

  41. Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2816–2829 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of S. Jiang and Y. Wang was supported by National Natural Science Foundation of China (61632002 and 61472372), Science and Technology Innovation Talents of Henan Province (174200510012), and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (154200510012). The work of F. Xu was supported by National Natural Science Foundation of China (61502186) and China Postdoctoral Science Foundation (2016M592335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, S., Wang, Y., Xu, J., Xu, F. (2017). Cell-Like P Systems with Symport/Antiport Rules and Promoters. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics