Skip to main content

A Circuit Simplification Mechanism Based on DNA Combinatorial Strands Displacement

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 791))

  • 1119 Accesses

Abstract

Through extensive application of DNA strand displacement technology in the field of molecular computing, we know that the DNA strand of the toehold domain and the branch migration domain are covalently connected to form logical gates in traditional DNA strand displacement circuits. In this paper, we will adopt a composite strand mechanism that the toehold domain and branch migration domain in different single strand form displacing complex, and construct logical gates with combinatorial strand displacement mechanism. After that, a logic gate model is constructed, and the mechanism is verified by the design and simulation of the logical molecular model of the encoder. When the DNA signal strand is input, the signal strand molecule can be output by combination of molecular specific hybridization reaction and intermolecular strand displacement reaction. The results of Visual DSD simulation show the feasibility and accuracy of the encoder logic calculation model designed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao, C., Labean, T.H., Relf, J.H.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  2. Penchovsky, R., Breaker, R.R.: Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23, 1424 (2005)

    Article  Google Scholar 

  3. Seelig, G., Soloveichik, D., Zhang, D.Y.: Nucleic acid-based logic circuits. Science 314, 1582–1588 (2006)

    Article  Google Scholar 

  4. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  5. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103 (2011)

    Article  Google Scholar 

  6. Genot, A.J., Zhang, D.Y., Bath, J.: Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc. 133, 2177 (2011)

    Article  Google Scholar 

  7. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 2008. LNCS, vol. 5347, pp. 70–89. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03076-5_7

    Chapter  Google Scholar 

  8. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011)

    Article  Google Scholar 

  9. Zhang, C., Li, D.: Molecular logic computing model based on DNA self-assembly strand branch migration. Chin. Sci. Bull. 58, 32–38 (2013)

    Article  Google Scholar 

  10. Abels, S.G., Khisamutdinov, E.F.: Nucleic acid computing and its potentialto transform silicon-based technology. DNA RNA Nanotechnol. 2, 13–22 (2015)

    Article  Google Scholar 

  11. Song, T., Zheng, P., Wong, M.L.D.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  12. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS ONE 9, e108856 (2014)

    Article  Google Scholar 

  13. Song, T., Garg, S., Mokhtar, R.: Analog computation by DNA strand displacement circuits. ACS Synth. Biol. 5, 898 (2016)

    Article  Google Scholar 

  14. Zhang, C., Yang, J., Xu, J.: Molecular logic computing model based on self-assembly of DNA nanoparticles. Chin. Sci. Bull. 56, 3566–3571 (2011)

    Article  Google Scholar 

  15. Shi, X., Lu, W., Wang, Z., Pan, L., Cui, G., Xu, J.: Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 25, 075602 (2014)

    Article  Google Scholar 

  16. Sun, J., Wu, Y., Cui, G., Wang, Y.: Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 88, 1677–1690 (2017)

    Article  Google Scholar 

  17. Genot, A.J., Bath, J., Turberfield, A.J.: Combinatorial displacement of DNA strands: application to matrix multiplication and weighted sums. Angew. Chem. Int. Ed. Engl. 125, 1227–1230 (2013)

    Article  Google Scholar 

  18. Sun, J., Wang, Y., Wang, Y., Shen, Y.: Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control. Nonlinear Dyn. 85, 1105–1117 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jing, Y., Song, Z., Shi, L., Zhang, Q., Zhang, C.: Dynamically arranging gold nanoparticles on DNA origami for molecular logic gates. ACS Appl. Mater. Inter. 8, 22451 (2016)

    Article  Google Scholar 

  20. Elbaz, J., Yin, P., Voigt, C.A.: Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nat. Commun. 7, 11179 (2016)

    Article  Google Scholar 

  21. Jing, Y., Shuoxing, J., Xiangrong, L., Linqiang, P., Cheng, Z.: Aptamer-binding directed DNA origami pattern for logic gates. ACS Appl. Mater. Inter. 8, 34054–34060 (2016)

    Article  Google Scholar 

  22. Mateiu, L., Rannala, B.: Inferring complex DNA substitution processes on phylogenies using uniformization and data augmentation. Syst. Biol. 55, 259–269 (2006)

    Article  Google Scholar 

  23. Li, W., Yang, Y., Yan, H.: Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett. 13, 2980 (2013)

    Article  Google Scholar 

  24. Alexandru, M., Banu, V., Vellvehi, M.: Design of digital electronics for high temperature using basic logic gates made of 4H-SiC MESFETs. Mater. Sci. Forum 711, 104–108 (2011)

    Article  Google Scholar 

  25. Jing, Y., Chen, D., Dong, Y., Shi, L., Pan, L., Cheng, Z.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater. Inter. 6, 14486–14492 (2012)

    Google Scholar 

  26. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Nat. Acad. Sci. USA 107, 5393–5398 (2010)

    Article  Google Scholar 

  27. Nasri, A., Boubaker, A., Khaldi, W., Hafsi, B., Kalboussi, A.: Tuning negative differential resistance in a single molecule transistor: designs of logic gates and effects of various oxygen- and hydrogen-induced defects. Dig. J. Nanomater. Bios. 12, 99–110 (2017)

    Google Scholar 

  28. Sun, J., Shen, Y.: Quasi-ideal memory system. IEEE Trans. Cybern. 45, 1353–1362 (2015)

    Article  Google Scholar 

  29. Wang, Y., Tian, G., Hou, H., Ye, M., Cui, G.: Simple logic computation based on the DNA strand displacement. J. Comput. Theor. Nanosci. 11, 1975–1982 (2014)

    Article  Google Scholar 

  30. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work for this paper was supported by the National Natural Science Foundation of China (Grant Nos. 61602424, 61472371, 61572446, 61472372), Plan for Scientific Innovation Talent of Henan Province (Grant No. 174100510009), Program for Science and Technology Innovation Talents in Universities of Henan Province (Grant No. 15HASTIT019) and Key Scientific Research Projects of Henan High Educational Institution (18A510020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuncai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Han, F., Wang, Y. (2017). A Circuit Simplification Mechanism Based on DNA Combinatorial Strands Displacement. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7179-9_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7178-2

  • Online ISBN: 978-981-10-7179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics