Skip to main content

Dynamic Response of Syntactic Foams and Sandwich Composites: Blast and High Strain Rate Loading

  • Chapter
  • First Online:
Blast Mitigation Strategies in Marine Composite and Sandwich Structures

Abstract

Syntactic foams are hollow particle filled composite materials containing closed-cell porosity. Reinforcement of porosity by the shell of the hollow particle results in high mechanical properties of these foams compared to foams containing gas porosity and enables their structural applications. The present work is focused on discussing dynamic properties of syntactic foams. More specifically, properties of syntactic foams under high strain rate compression and blast loading conditions are discussed for potential applications in lightweight armors and military structures. The wall thickness and volume fraction of hollow particles can be tailored to obtain high damping in these materials. Crushing of hollow particles and particle-matrix interfacial failure provide additional mechanisms of energy absorption, which can be used to develop syntactic foams with high energy absorption capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gupta, N., Zeltmann, S. E., Shunmugasamy, V. C., & Pinisetty, D. (2014). Applications of polymer matrix syntactic foams. JOM, 66(2), 245–254.

    Article  Google Scholar 

  2. Gupta, N., Pinisetty, D., & Shunmugasamy, V. C. (2013). Reinforced polymer matrix syntactic foams: Effect of nano and micro-scale reinforcement. SpringerBriefs in Materials. Springer.

    Google Scholar 

  3. Gupta, N., & Rohatgi, P. K. (Eds.). (2014). Metal matrix syntactic foams: Processing, microstructure, properties and applications. DEStech Publications: Lancaster, PA.

    Google Scholar 

  4. Song, B., Chen, W., Yanagita, T., & Frew, D. J. (2005). Confinement effects on the dynamic compressive properties of an epoxy syntactic foam. Composite Structures, 67(3), 279–287.

    Article  Google Scholar 

  5. Huang, C., Huang, Z., Qin, Y., Ding, J., & Lv, X. (2016). Mechanical and dynamic mechanical properties of epoxy syntactic foams reinforced by short carbon fiber. Polymer Composites, 37(7), 1960–1970.

    Article  Google Scholar 

  6. Bharath Kumar, B. R., Singh, A. K., Doddamani, M., Luong, D. D., & Gupta, N. (2016). Quasi-static and high strain rate compressive response of injection-molded cenosphere/HDPE syntactic foam. JOM, 68(7), 1861–1871.

    Article  Google Scholar 

  7. Rohatgi, P. K., Matsunaga, T., & Gupta, N. (2009). Compressive and ultrasonic properties of polyester/fly ash composites. Journal of Materials Science, 44(6), 1485.

    Article  Google Scholar 

  8. Gupta, N., Woldesenbet, E., & Mensah, P. (2004). Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Composites Part A: Applied Science and Manufacturing, 35(1), 103–111.

    Article  Google Scholar 

  9. Woldesenbet, E., & Peter, S. (2009). Volume fraction effect on high strain rate properties of syntactic foam composites. Journal of Materials Science, 44(6), 1528–1539.

    Article  Google Scholar 

  10. Woldesenbet, E., & Peter, S. (2008). Radius ratio effect on high-strain rate properties of syntactic foam composites. Journal of Materials Science, 44(6), 1551.

    Article  Google Scholar 

  11. Li, P., Petrinic, N., Siviour, C. R., Froud, R., & Reed, J. M. (2009). Strain rate dependent compressive properties of glass microballoon epoxy syntactic foams. Materials Science and Engineering: A, 515(1–2), 19–25.

    Article  Google Scholar 

  12. Xie, W., Yan, H., Mei, Q., Du, M., & Huang, Z. (2007). Compressive and fracture properties of syntactic foam filled with hollow plastic bead (HPC). Journal of Wuhan University of Technology-Materials Science Edition, 22(3), 499–501.

    Google Scholar 

  13. Ambika Devi, K., John, B., Reghunadhan Nair, C. P., & Ninan, K. N. (2007). Syntactic foam composites of epoxy-allyl phenol-bismaleimide ternary blend—Processing and properties. Journal of Applied Polymer Science, 105(6), 3715–3722.

    Article  Google Scholar 

  14. Kishore, Shankar, R., & Sankaran, S. (2006). Effects of microballoons’ size and content in epoxy on compressive strength and modulus. Journal of Materials Science, 41(22), 7459–7465

    Google Scholar 

  15. Wouterson, E. M., Boey, F. Y. C., Hu, X., & Wong, S.-C. (2005). Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures. Composites Science and Technology, 65(11–12), 1840–1850.

    Article  Google Scholar 

  16. Karthikeyan, C.S., Sankaran, S., Jagdish Kumar, M.N., & Kishore. (2001). Processing and compressive strengths of syntactic foams with and without fibrous reinforcements. Journal of Applied Polymer Science, 81(2), 405–411.

    Google Scholar 

  17. Dimchev, M., Caeti, R., & Gupta, N. (2010). Effect of carbon nanofibers on tensile and compressive characteristics of hollow particle filled composites. Materials and Design, 31(3), 1332–1337.

    Article  Google Scholar 

  18. Gupta, N., & Maharsia, R. (2005). Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications. Applied Composite Materials, 12(3), 247–261.

    Article  Google Scholar 

  19. Song, B., Chen, W., & Frew, D. J. (2004). Dynamic compressive response and failure behavior of an epoxy syntactic foam. Journal of Composite Materials, 38(11), 915–936.

    Article  Google Scholar 

  20. Viot, P., Shankar, K., & Bernard, D. (2008). Effect of strain rate and density on dynamic behaviour of syntactic foam. Composite Structures, 86(4), 314–327.

    Article  Google Scholar 

  21. Peter, S., & Woldesenbet, E. (2008). Nanoclay syntactic foam composites—High strain rate properties. Materials Science and Engineering: A, 494(1–2), 179–187.

    Article  Google Scholar 

  22. Song, B., Chen, W. W., & Lu, W. Y. (2007). Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam. International Journal of Mechanical Sciences, 49(12), 1336–1343.

    Article  Google Scholar 

  23. Drdlová, M., & Prachař, V. (2016). High strain rate characteristics of nanoparticle modified blast energy absorbing materials. Procedia Engineering, 151, 214–221.

    Article  Google Scholar 

  24. Ahmadi, H., Liaghat, G. H., Shokrieh, M. M., Hadavinia, H., Ordys, A., & Aboutorabi, A. (2014). Quasi-static and dynamic compressive properties of ceramic microballoon filled syntactic foam. Journal of Composite Materials, 49(10), 1255–1266.

    Article  Google Scholar 

  25. Ahmadi, H., Liaghat, G. H., Shokrieh, M. M., Aboutorabi, A., Hadavinia, H., & Ordys, A. (2014). Compressive properties of nanoclay-reinforced syntactic foams at quasi-static and high strain rate loading. Polymer-Plastics Technology and Engineering, 53(10), 990–999.

    Article  Google Scholar 

  26. Pellegrino, A., Tagarielli, V. L., Gerlach, R., & Petrinic, N. (2015). The mechanical response of a syntactic polyurethane foam at low and high rates of strain. International Journal of Impact Engineering, 75, 214–221.

    Article  Google Scholar 

  27. Luong, D. D., Shunmugasamy, V. C., Strbik III, O. M., & Gupta, N. (2014). High strain rate compressive behavior of polyurethane resin and polyurethane/Al2O3 hollow sphere syntactic foams. Journal of Composites, Article ID 795984.

    Google Scholar 

  28. Gupta, N., Ye, R., & Porfiri, M. (2010). Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Composites Part B: Engineering, 41(3), 236–245.

    Article  Google Scholar 

  29. Labella, M., Shunmugasamy, V. C., Strbik, O. M., & Gupta, N. (2014). Compressive and thermal characterization of syntactic foams containing hollow silicon carbide particles with porous shell. Journal of Applied Polymer Science, 131(17), 8593–8597.

    Article  Google Scholar 

  30. Labella, M., Zeltmann, S. E., Shunmugasamy, V. C., Gupta, N., & Rohatgi, P. K. (2014). Mechanical and thermal properties of fly ash/vinyl ester syntactic foams. Fuel, 121, 240–249.

    Article  Google Scholar 

  31. Shunmugasamy, V. C., Gupta, N., Nguyen, N. Q., & Coelho, P. G. (2010). Strain rate dependence of damage evolution in syntactic foams. Materials Science and Engineering: A, 527(23), 6166–6177.

    Article  Google Scholar 

  32. Rohatgi, P. K., Kim, J. K., Gupta, N., Alaraj, S., & Daoud, A. (2006). Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites Part A: Applied Science and Manufacturing, 37(3), 430–437.

    Article  Google Scholar 

  33. Sudarshan, & Surappa, M. K. (2008). Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Materials Science and Engineering: A, 480(1–2), 117–124.

    Google Scholar 

  34. Tao, X. F., Zhang, L. P., & Zhao, Y. Y. (2009). Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Materials and Design, 30(7), 2732–2736.

    Article  Google Scholar 

  35. Luong, D. D., Gupta, N., Daoud, A., & Rohatgi, P. K. (2011). High strain rate compressive characterization of aluminum alloy/fly ash cenosphere composites. JOM, 63(2), 53–56.

    Google Scholar 

  36. Májlinger, K., & Orbulov, I. N. (2014). Characteristic compressive properties of hybrid metal matrix syntactic foams. Materials Science and Engineering: A, 606, 248–256.

    Article  Google Scholar 

  37. Vogiatzis, C. A., Tsouknidas, A., Kountouras, D. T., & Skolianos, S. (2015). Aluminum–ceramic cenospheres syntactic foams produced by powder metallurgy route. Materials and Design, 85, 444–454.

    Article  Google Scholar 

  38. Szlancsik, A., Katona, B., Májlinger, K., & Orbulov, I. (2015). Compressive behavior and microstructural characteristics of iron hollow sphere filled aluminum matrix syntactic foams. Materials, 8(11), 5432.

    Google Scholar 

  39. Myers, K., Katona, B., Cortes, P., & Orbulov, I. N. (2015). Quasi-static and high strain rate response of aluminum matrix syntactic foams under compression. Composites Part A: Applied Science and Manufacturing, 79, 82–91.

    Article  Google Scholar 

  40. Licitra, L., Luong, D. D., Strbik III, O. M., & Gupta, N. (2015). Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams. Materials and Design, 66, Part B, 504–515.

    Google Scholar 

  41. Alvandi-Tabrizi, Y., Whisler, D. A., Kim, H., & Rabiei, A. (2015). High strain rate behavior of composite metal foams. Materials Science and Engineering: A, 631, 248–257.

    Article  Google Scholar 

  42. Zhang, B., Lin, Y., Li, S., Zhai, D., & Wu, G. (2016). Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Composites Part B: Engineering, 98, 288–296.

    Article  Google Scholar 

  43. Daoud, A., Abou El-khair, M. T., Abdel-Aziz, M., & Rohatgi, P. (2007). Fabrication, microstructure and compressive behavior of ZC63 Mg-microballoon foam composites. Composites Science and Technology, 67(9), 1842–1853.

    Article  Google Scholar 

  44. Rohatgi, P. K., Daoud, A., Schultz, B. F., & Puri, T. (2009). Microstructure and mechanical behavior of die casting AZ91D-Fly ash cenosphere composites. Composites Part A: Applied Science and Manufacturing, 40(6–7), 883–896.

    Article  Google Scholar 

  45. Luong, D. D., Gupta, N., & Rohatgi, P. K. (2011). The high strain rate compressive response of Mg-Al alloy/fly Ash cenosphere composites. JOM, 63(2), 48–52.

    Google Scholar 

  46. Brown, J., Vendra, L., & Rabiei, A. (2010). Bending properties of Al-steel and steel-steel composite metal foams. Metallurgical and Materials Transactions A, 41(11), 2784–2793.

    Article  Google Scholar 

  47. Weise, J., Baumeister, J., Yezerska, O., Salk, N., & Silva, G. B. D. (2010). Syntactic iron foams with integrated microglass bubbles produced by means of metal powder injection moulding. Advanced Engineering Materials, 12(7), 604–608.

    Article  Google Scholar 

  48. Castro, G., & Nutt, S. R. (2012). Synthesis of syntactic steel foam using mechanical pressure infiltration. Materials Science and Engineering: A, 535, 274–280.

    Article  Google Scholar 

  49. Castro, G., & Nutt, S. R. (2012). Synthesis of syntactic steel foam using gravity-fed infiltration. Materials Science and Engineering: A, 553, 89–95.

    Article  Google Scholar 

  50. Peroni, L., Scapin, M., Avalle, M., Weise, J., & Lehmhus, D. (2012). Dynamic mechanical behavior of syntactic iron foams with glass microspheres. Materials Science and Engineering: A, 552, 364–375.

    Article  Google Scholar 

  51. Rabiei, A., & Garcia-Avila, M. (2013). Effect of various parameters on properties of composite steel foams under variety of loading rates. Materials Science and Engineering: A, 564, 539–547.

    Article  Google Scholar 

  52. Peroni, L., Scapin, M., Fichera, C., Lehmhus, D., Weise, J., Baumeister, J., et al. (2014). Investigation of the mechanical behaviour of AISI 316L stainless steel syntactic foams at different strain-rates. Composites Part B: Engineering, 66, 430–442.

    Article  Google Scholar 

  53. Weise, J., Lehmhus, D., Baumeister, J., Kun, R., Bayoumi, M., & Busse, M. (2014). Production and properties of 316L stainless steel cellular materials and syntactic foams. Steel Research International, 85(3), 486–497.

    Google Scholar 

  54. Luong, D. D., Shunmugasamy, V. C., Gupta, N., Lehmhus, D., Weise, J., & Baumeister, J. (2015). Quasi-static and high strain rates compressive response of iron and Invar matrix syntactic foams. Materials and Design, 66, Part B, 516–531.

    Google Scholar 

  55. Luong, D., Lehmhus, D., Gupta, N., Weise, J., & Bayoumi, M. (2016). Structure and compressive properties of invar-cenosphere syntactic foams. Materials, 9(2), 115.

    Article  Google Scholar 

  56. Xue, X. B., Zhao, Y. Y., Kearns, V., & Williams, R. L. (2010). Mechanical and biological properties of titanium syntactic foams. In TMS 2010 Annual Meeting and Exhibition. Warrendale.

    Google Scholar 

  57. Xue, X., & Zhao, Y. (2011). Ti matrix syntactic foam fabricated by powder metallurgy: Particle breakage and elastic modulus. JOM, 63(2), 43–47.

    Google Scholar 

  58. Santa Maria, J. A., Schultz, B. F., Ferguson, J. B., & Rohatgi, P. K. (2013). Al–Al2O3 syntactic foams—Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams. Materials Science and Engineering: A, 582, 415–422.

    Article  Google Scholar 

  59. Santa Maria, J. A., Schultz, B. F., Ferguson, J. B., Gupta, N., & Rohatgi, P. K. (2014). Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380–Al2O3 syntactic foams. Journal of Materials Science, 49(3), 1267–1278.

    Article  Google Scholar 

  60. Goel, M. D., Mondal, D. P., Yadav, M. S., & Gupta, S. K. (2014). Effect of strain rate and relative density on compressive deformation behavior of aluminum cenosphere syntactic foam. Materials Science and Engineering: A, 590, 406–415.

    Article  Google Scholar 

  61. Cox, J., Luong, D., Shunmugasamy, V., Gupta, N., Strbik, O., & Cho, K. (2014). Dynamic and Thermal properties of aluminum alloy A356/silicon carbide hollow particle syntactic foams. Metals, 4(4), 530.

    Article  Google Scholar 

  62. Rocha Rivero, G. A., Schultz, B. F., Ferguson, J. B., Gupta, N., & Rohatgi, P. K. (2013). Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams. Journal of Materials Research, 28(17), 2426–2435.

    Article  Google Scholar 

  63. Tao, X. F., & Zhao, Y. Y. (2009). Compressive behavior of Al matrix syntactic foams toughened with Al particles. Scripta Materialia, 61(5), 461–464.

    Article  Google Scholar 

  64. Zou, L. C., Zhang, Q., Pang, B. J., Wu, G. H., Jiang, L. T., & Su, H. (2013). Dynamic compressive behavior of aluminum matrix syntactic foam and its multilayer structure. Materials and Design, 45, 555–560.

    Article  Google Scholar 

  65. Luong, D. D., Strbik, O. M., III, Hammond, V. H., Gupta, N., & Cho, K. (2013). Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates. Journal of Alloys and Compounds, 550, 412–422.

    Article  Google Scholar 

  66. Dou, Z. Y., Jiang, L. T., Wu, G. H., Zhang, Q., Xiu, Z. Y., & Chen, G. Q. (2007). High strain rate compression of cenosphere-pure aluminum syntactic foams. Scripta Materialia, 57(10), 945–948.

    Article  Google Scholar 

  67. Zhang, L. P., & Zhao, Y. Y. (2007). Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. Journal of Composite Materials, 41(17), 2105–2117.

    Article  Google Scholar 

  68. Mondal, D. P., Goel, M. D., & Das, S. (2009). Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Materials Science and Engineering: A, 507(1–2), 102–109.

    Article  Google Scholar 

  69. Rabiei, A., & O’Neill, A. T. (2005). A study on processing of a composite metal foam via casting. Materials Science and Engineering: A, 404(1–2), 159–164.

    Article  Google Scholar 

  70. Vendra, L., Neville, B., & Rabiei, A. (2009). Fatigue in aluminum–steel and steel–steel composite foams. Materials Science and Engineering: A, 517(1–2), 146–153.

    Article  Google Scholar 

  71. Neville, B. P., & Rabiei, A. (2008). Composite metal foams processed through powder metallurgy. Materials and Design, 29(2), 388–396.

    Article  Google Scholar 

  72. Newsome, D., Schultz, B., Ferguson, J., & Rohatgi, P. (2015). Synthesis and quasi-static compressive properties of Mg-AZ91D-Al2O3 syntactic foams. Materials, 8(9), 5292.

    Article  Google Scholar 

  73. Daoud, A. (2008). Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Materials Science and Engineering: A, 488(1–2), 281–295.

    Article  Google Scholar 

  74. Anantharaman, H., Shunmugasamy, V. C., Strbik, O. M., III, Gupta, N., & Cho, K. (2015). Dynamic properties of silicon carbide hollow particle filled magnesium alloy (AZ91D) matrix syntactic foams. International Journal of Impact Engineering, 82, 14–24.

    Article  Google Scholar 

  75. Tagliavia, G., Porfiri, M., & Gupta, N. (2011). Analysis of particle-to-particle elastic interactions in syntactic foams. Mechanics of Materials, 43(12), 952–968.

    Article  Google Scholar 

  76. Bharath Kumar, B. R., Zeltmann, S. E., Doddamani, M., Gupta, N., Uzma, Gurupadu, S., & Sailaja, R. R. N. (2016). Effect of cenosphere surface treatment and blending method on the tensile properties of thermoplastic matrix syntactic foams. Journal of Applied Polymer Science, 133(35), n/a–n/a.

    Google Scholar 

  77. Tagliavia, G., Porfiri, M., & Gupta, N. (2010). Analysis of hollow inclusion–matrix debonding in particulate composites. International Journal of Solids and Structures, 47(16), 2164–2177.

    Article  MATH  Google Scholar 

  78. Zeltmann, S. E., Prakash, K. A., Doddamani, M., & Gupta, N. (2017). Prediction of modulus at various strain rates from dynamic mechanical analysis data for polymer matrix composites. Composites Part B: Engineering, 120, 27–34.

    Article  Google Scholar 

  79. Zeltmann, S. E., Bharath Kumar, B. R., Doddamani, M., & Gupta, N. (2016). Prediction of strain rate sensitivity of high density polyethylene using integral transform of dynamic mechanical analysis data. Polymer, 101, 1–6.

    Article  Google Scholar 

  80. Gupta, N., & Shunmugasamy, V. C. (2011). High strain rate compressive response of syntactic foams: Trends in mechanical properties and failure mechanisms. Materials Science and Engineering: A, 528(25–26), 7596–7605.

    Article  Google Scholar 

  81. Ahmadi, H., Liaghat, G., Shokrieh, M., Hadavinia, H., Ordys, A., & Aboutorabi, A. (2015). Quasi-static and dynamic compressive properties of ceramic microballoon filled syntactic foam. Journal of Composite Materials, 49(10), 1255–1266.

    Article  Google Scholar 

  82. Goel, M. D., Peroni, M., Solomos, G., Mondal, D. P., Matsagar, V. A., Gupta, A. K., et al. (2012). Dynamic compression behavior of cenosphere aluminum alloy syntactic foam. Materials and Design, 42, 418–423.

    Article  Google Scholar 

  83. Karlos, V., & Solomos, G. (2013). Calculation of blast loads for application to structural components. Publications Office of the European Union, Luxembourg, p. JRC Technical Reports: EUR 26456 EN.

    Google Scholar 

  84. Porfiri, M., & Gupta, N. (2010). A review of research on impulsive loading of marine composites. In I. M. Daniel, E. E. Gdoutos, & Y. D. S. Rajapakse (Eds.), Major accomplishments in composite materials and sandwich structures (pp. 169–194). Springer Netherlands: Dordrecht.

    Google Scholar 

  85. Hause, T. (2012). Elastic structural response of anisotropic sandwich plates with a first-order compressible core impacted by a Friedlander-type shock loading. Composite Structures, 94(5), 1634–1645.

    Article  Google Scholar 

  86. Peroni, L., Scapin, M., Avalle, M., Weise, J., Lehmhus, D., Baumeister, J., et al. (2012). Syntactic iron foams—on deformation mechanisms and strain-rate dependence of compressive properties. Advanced Engineering Materials, 14(10), 909–918.

    Article  Google Scholar 

  87. 3M. (2017). 3Mâ„¢ Glass Bubbles S60HS. Retrieved April 28, 2017, from http://multimedia.3m.com/mws/media/184506O/3mtm-glass-bubbles-s60hs.pdf.

  88. Ryan, A. A., David, L. M., & David, J. B. (2006). Numerical simulation of shock wave propagation in spatially-resolved particle systems. Modelling and Simulation in Materials Science and Engineering, 14(4), 537.

    Article  Google Scholar 

  89. Marsh, S. P. (1980). LASL shock Hugoniot data (vol. 5). University of California Press.

    Google Scholar 

  90. Christou, G. A., Young, L. R., Goel, R., Vechart, A. P., & Jérusalem, A. (2012). Shock attenuation of PMMA sandwich panels filled with soda-lime glass beads: A fluid-structure interaction continuum model simulation. International Journal of Impact Engineering, 47, 48–59.

    Article  Google Scholar 

  91. Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31–48.

    Article  Google Scholar 

  92. Caeti, R., Gupta, N., & Porfiri, M. (2009). Processing and compressive response of functionally graded composites. Materials Letters, 63(22), 1964–1967.

    Article  Google Scholar 

  93. Gupta, N. (2007). A functionally graded syntactic foam material for high energy absorption under compression. Materials Letters, 61(4–5), 979–982.

    Article  Google Scholar 

  94. Omar, M. Y., Xiang, C., Gupta, N., Strbik, O. M., III, & Cho, K. (2015). Syntactic foam core metal matrix sandwich composite under bending conditions. Materials and Design, 86, 536–544.

    Article  Google Scholar 

  95. Lamanna, E., Gupta, N., Cappa, P., Strbik, O. M., III, & Cho, K. (2017). Evaluation of the dynamic properties of an aluminum syntactic foam core sandwich. Journal of Alloys and Compounds, 695, 2987–2994.

    Article  Google Scholar 

  96. Gupta, N., Kishore, & Sankaran, S. (1999). On the characterisation of syntactic foam core sandwich composites for compressive properties. Journal of Reinforced Plastics and Composites, 18(14), 1347–1357

    Google Scholar 

  97. Abaqus. (2012). Abaqus Analysis User’s Manual (6.12).

    Google Scholar 

  98. Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6–7), 1253–1283.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Office of Naval Research grant N00014-10-1-0988. The views expressed in this article are those of authors, not of funding agencies. The authors thank the MAE Department at NYU for providing facilities and support. Steven E. Zeltmann is thanked for help with manuscript preparation and technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luong, D.D., Ansuini, L., Gupta, N. (2018). Dynamic Response of Syntactic Foams and Sandwich Composites: Blast and High Strain Rate Loading. In: Gopalakrishnan, S., Rajapakse, Y. (eds) Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7170-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7170-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7169-0

  • Online ISBN: 978-981-10-7170-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics