Skip to main content

Sandwich Structures Subjected to UNDEX Loading

  • Chapter
  • First Online:
Blast Mitigation Strategies in Marine Composite and Sandwich Structures

Abstract

Sandwich structures have high energy absorption and blast mitigation capabilities due to their configuration. In the present chapter, a computational model using time domain spectral element method or spectral element method (SEM) developed by the authors for a sandwich beam with composite facesheets and a compliant core is explained. This computational model is developed based on extended high order sandwich panel theory (EHSAPT) in which higher order displacement functions are taken for the core in order to incorporate core compression. A brief explanation about the underwater explosion (UNDEX) phenomena and the loading is presented. The sandwich model and analytical model developed by Hayman (1995) are used to study the fluid–structure interaction (FSI) and response of sandwich structures to the UNDEX loading. Significant differences in the FSI responses of homogeneous and sandwich structures is shown. These studies will result in the design of an optimal configuration for blast resistant sandwich structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zenkert, D. (1995). An introduction to sandwich construction. London: EMAS.

    Google Scholar 

  2. Taylor, G. I. (1963). The pressure and impulse of submarine explosion waves on plates. The scientific (Vol. 3, pp. 287–303).

    Google Scholar 

  3. Raja Sekhar, B., Gopalakrishnan, S., & Murthy, M. V. V. S. (2016). Wave transmission characteristics for higher-order sandwich panel with flexible core using time-domain spectral element method. Journal of Sandwich Structures & Materials, 1099636216664536 (2016).

    Google Scholar 

  4. Wanji, C., & Zhen, W. (2008). A selective review on recent development of displacement-based laminated plate theories. Recent Patents on Mechanical Engineering, 1, 29–44.

    Article  Google Scholar 

  5. Frostig, Y., Baruch, M., Vilnay, O., & Sheinman, I. (1992). High order theory for sandwich beam behaviour with transversely flexible core. Journal of Engineering Mechanics, 118(5), 1026–1043.

    Article  Google Scholar 

  6. Frostig, Y., & Baruch, M. (1996). Localized loads effects in high-order bending of sandwich panels with flexible core. Journal of Engineering Mechanics, 122(11), 1069–1076.

    Article  Google Scholar 

  7. Nemat-Naseer, S., Kang, W., McGee, J., Guo, W., & Issacs, J. (2007). Experimental investigation of energy absorption characteristics of components of sandwich structures. International Journal of Impact Engineering, 34(6), 1119–1146.

    Article  Google Scholar 

  8. Phan, C. N., Frostig, Y., & Kardomateas, G. A. (2012). Analysis of sandwich beams with a compliant core and with in-plane rigidity-extended high-order sandwich panel theory versus elasticity. Journal of Engineering Mechanics, 79, 041001/1–041001/11.

    Google Scholar 

  9. Phan, C. N., Bailey, N. W., Kardomateas, G. A., & Battley, M. A. (2012). Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: Formulation, comparison with elasticity and experiments. Archive of Applied Mechanics, 82, 1585–1599.

    Article  MATH  Google Scholar 

  10. Phan, C. N., Kardomateas, G. A., & Frostig, Y. (2013). Blast response of a sandwich beam/wide plate based on the extended high-order sandwich panel theory and comparison with elasticity. Journal of Applied Mechanics, 80, 061005/1–061005/11.

    Google Scholar 

  11. Oskooei, S., & Hansen, J. S. (2000). Higher-order finite element for sandwich plates. AIAA Journal, 38(3), 525–533.

    Article  Google Scholar 

  12. Kudela, P., Krawczuk, M., & Ostachowicz, W. (2007). Wave propagation modelling in 1-d structures using spectral finite elements. Journal of Sound and Vibration, 300, 88–100.

    Article  MATH  Google Scholar 

  13. Sprague, M. A., & Geers, T. L. (2008). Legendre spectral finite elements for structural dynamics analysis. Communications in Numerical Methods in Engineering, 24, 1953–1965.

    Article  MathSciNet  MATH  Google Scholar 

  14. Boyd, J. P. (2001). Chebyshev and Fourier spectral methods. Mineola, Newyork: Dover Publications Inc.

    MATH  Google Scholar 

  15. Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (2007). Spectral methods evolution to complex geometries and applications to fluid dynamics. Springer.

    Google Scholar 

  16. Sprague, M. A., & Purkayastha, A. (2015). Legendre spectral finite elements for reissner-mindlin composite plates. Finite Elements in Analysis and Design, 105, 33–43.

    Article  MathSciNet  Google Scholar 

  17. Chakraborty, A., Mahapatra, D. R., & Gopalakrishnan, S. (2002). Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities. Composite Structures, 55, 23–36.

    Article  Google Scholar 

  18. Costanzo, F. A. (2011). Underwater explosion phenomena and shock physics. In Structural dynamics (Vol. 3, pp. 917–938). Springer.

    Google Scholar 

  19. Swisdak, M. M. (1978). Explosion effects and properties-part ii: Explosion effects in water. Technical report, Naval Surface Weapons Center, Dahlgren, VA.

    Google Scholar 

  20. Hayman, B. (1995). Underwater explosion loading on foam-cored sandwich panels. Sandwich Construction, 3.

    Google Scholar 

  21. Makinen, K. (1999). The transverse response of sandwich panels to an underwater shock wave. Journal of Fluids and Structures, 13, 631–646.

    Article  Google Scholar 

  22. Fleck, N. A., & Deshpande, V. S. (2004). The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, 71, 386–401.

    Article  MATH  Google Scholar 

  23. Librescu, L., Sang-Yong, O., & Hohe, J. (2006). Dynamic response of anisotropic sandwich flat panels to underwater and in-air explosions. International Journal of Solids and Structures, 43(13), 3794–3816.

    Article  MATH  Google Scholar 

  24. Kamocka, M. (2015). Analytical and experimental determination of fml stiffness and strength properties. Mechanics and Mechanical Engineering, 19(2), 141–159.

    Google Scholar 

  25. Wu, H. F., Wu, L. L., Slagter, W. J., & Verolme, J. L. (1994). Use of rule of mixtures and metal volume fraction for mechanical property predictions of fibre-reinforced aluminium laminates. Journal of Materials Science, 29(17), 4583–4591.

    Article  Google Scholar 

  26. Pozrikidis, C. (2005). Introduction to finite and spectral element methods using MATLAB. Boca Raton: Chapman and Hall.

    MATH  Google Scholar 

  27. Reddy, J. N. (1997). Mechanics of laminated composite plates. CRC Press.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Office of Naval Research and specially Dr. Y.D.S. Rajapakse for their continuous support under grant no. N6209-14-1-N139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gopalakrishnan .

Editor information

Editors and Affiliations

Appendix

Appendix

The matrices of Eqs. (7) and (8) are given as,

$$ [Z^{t,b}]_{2 \times 4}=\begin{bmatrix} 1&0&z&0\\ 0&1&0&z \end{bmatrix} $$
$$ [Z^{c}]_{3 \times 12}=\left[ \begin{array}{cccccccccccc} 1 &{} 0 &{} 0 &{} z &{} 0 &{} 0 &{} z^2 &{} 0 &{} 0 &{} z^3 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 &{} z &{} 0 &{} 0 &{} z^2 &{} 0 &{} 0 &{} z^3 &{} 0\\ 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} z &{} 0 &{} 0 &{} z^2 &{} 0 &{} 0 &{} z^3 \end{array} \right] $$
$$\begin{aligned}&[\partial ^{t}]_{4 \times 3} = \begin{bmatrix} \dfrac{\partial }{\partial x}&0&\left( c+\dfrac{f_t}{2}\right) \dfrac{\partial }{\partial x}\\ 0&\dfrac{\partial }{\partial x}&-1\\ 0&0&-\dfrac{\partial }{\partial x}\\ 0&0&0 \end{bmatrix} {{{,}}}&[\partial ^{b}]_{4 \times 3} = \begin{bmatrix} \dfrac{\partial }{\partial x}&0&-\left( c+\dfrac{f_b}{2}\right) \dfrac{\partial }{\partial x}\\ 0&\dfrac{\partial }{\partial x}&-1\\ 0&0&-\dfrac{\partial }{\partial x}\\ 0&0&0 \end{bmatrix} \end{aligned}$$
$$ [\partial ^{c}] _{12 \times 9} = \begin{bmatrix} 0&0&0&\frac{\partial }{\partial x}&0&0&0&0&0\\ 0&\frac{1}{2c}&0&0&0&0&0&-\frac{1}{2c}&0\\ 0&0&0&0&\frac{\partial }{\partial x}&1&0&0&0\\ 0&0&0&0&0&\frac{\partial }{\partial x}&0&0&0\\ 0&\frac{1}{c^2}&0&0&\frac{-2}{c^2}&0&0&\frac{1}{c^2}&0\\ \frac{1}{c^2}&\frac{1}{2c}\frac{\partial }{\partial x}&\frac{ft}{2c^2}&-\frac{2}{c^2}&0&0&\frac{1}{c^2}&-\frac{1}{2c}\frac{\partial }{\partial x}&-\frac{f_b}{2c^2}\\ \frac{1}{2c^2}\frac{\partial }{\partial x}&0&\frac{f_t}{4c^2}\frac{\partial }{\partial x}&-\frac{1}{c^2}\frac{\partial }{\partial x}&0&0&\frac{1}{2c^2}\frac{\partial }{\partial x}&0&-\frac{f_b}{4c^2}\frac{\partial }{\partial x}\\ 0&0&0&0&0&0&0&0&0 \\ \frac{3}{2c^3}&\frac{1}{2c^2}\frac{\partial }{\partial x}&\frac{3f_t}{4c^3}&0&-\frac{1}{c^2}\frac{\partial }{\partial x}&-\frac{3}{c^2}&-\frac{3}{2c^3}&\frac{1}{2c^2}\frac{\partial }{\partial x}&\frac{3f_b}{4c^3}\\ \frac{1}{2c^3}\frac{\partial }{\partial x}&0&\frac{f_t}{4c^3}\frac{\partial }{\partial x}&0&0&\frac{-1}{c^2}\frac{\partial }{\partial x}&\frac{-1}{2c^3}\frac{\partial }{\partial x}&0&\frac{f_b}{4c^3}\frac{\partial }{\partial x}\\ 0&0&0&0&0&0&0&0&0 \\ 0&0&0&0&0&0&0&0&0 \\ \end{bmatrix} $$

and the strain displacement matrix, \([B^{x}]\) in Eq. (11) is given as

$$ [B^{t,c,b}] = [\partial ^{t,c,b}] \; [N^{t,c,b}] $$

where

$$ [N^t]_{3\times 72} = \begin{bmatrix} N_{1} [I]_{3\times 3} ,\; \left[ 0\right] _{3\times 6}\! ,\; N_{2} [I]_{3\times 3} ,\; \left[ 0\right] _{3\times 6} ,\; \ldots ,\; N_{8} [I]_{3\times 3} ,\; \left[ 0\right] _{3\times 6} \end{bmatrix} $$
$$ [N^c]_{9\times 72} = \begin{bmatrix} N_{1} [I]_{9\times 9} ,\; N_{2} [I]_{9\times 9} ,\; \ldots ,\; N_{8} [I]_{9\times 9} \end{bmatrix} $$
$$ [N^b]_{3\times 72} = \begin{bmatrix} \left[ 0 \right] _{3 \times 6} ,\; N_{1}[I]_{3\times 3} ,\; \left[ 0\right] _{3 \times 6} ,\; N_{2} [I]_{3\times 3} ,\; \ldots ,\; \left[ 0 \right] _{3 \times 6} \!,\; N_{8}[I]_{3\times 3} \end{bmatrix} $$

where, [0] is the matrix with zeros of size subscripted by the given dimension, [I] is the identity matrix of size subscripted by the given dimension, \(N_{1}, N_{2}, \ldots , N_{8}\) are the Lagrange interpolation functions of 7th degree in \(\zeta \) and can be found in standard text on FEM/SEM [26].

The stiffness matrix \(C^x\) is given as

$$\begin{aligned}&[C^{t,b}]_{4 \times 4} = \begin{bmatrix} [A^{t,b}]\;[B^{t,b}]\\ [B^{t,b}]\;[D^{t,b}] \end{bmatrix}&[C^c]_{12 \times 12} = \begin{bmatrix} [A^c]&[B^c]&[D^c]&[E^c] \\&[D^c]&[E^c]&[F^c] \\&[F^c]&[G^c] \\ {{\text {sym.}}}&&[H^c] \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned}&[A_{ij}^x]=\sum \limits _{k=1}^{N_x}[\bar{Q}_{ij}^x]_k\,(h_{k-1}-h_{k}),&[B_{ij}^x]=\frac{1}{2}\sum \limits _{k=1}^{N_x}[\bar{Q}_{ij}^x]_k\,(h_{k-1}^2-h_{k}^2),\\&[D_{ij}^x]=\frac{1}{3}\sum \limits _{k=1}^{N_x}[\bar{Q}_{ij}^x]_k\,(h_{k-1}^3-h_{k}^3),&[E_{ij}^x]=\frac{1}{4}\sum \limits _{k=1}^{N_x}[\bar{Q}_{ij}^x]_k\,(h_{k-1}^4-h_{k}^4),\\&[F_{ij}^x]=\frac{1}{5}\sum \limits _{k=1}^{N_x}[\bar{Q}_{ij}^x]_k\,(h_{k-1}^5-h_{k}^5),&[G_{ij}^x]=\frac{1}{6}\sum \limits _{k=1}^{N_x}[\bar{Q}_{ij}^x]_k\,(h_{k-1}^6-h_{k}^6),\\&[H_{ij}^x]=\frac{1}{7}\sum \limits _{k=1}^{N_x}[\bar{Q}_{ij}^x]_k\,(h_{k-1}^7-h_{k}^7) \end{aligned}$$

where superscript “x” represents “t”, “b”, or “c” indicating top face sheet, bottom face sheet and core respectively. \(N_{x}\) indicates the number of layers in the considered face sheet or the core and \([\bar{Q}_{ij}]\), is the transformed stiffness matrix of the layer “k” and is given in [27].

The inertia matrix, \([R^{x}]\) in Eq. (11) is given as

$$ [R^{t,b,c}] = [\partial Z^{t,c,b}]^T [CZ^{t,c,b}] [\partial Z^{t,c,b}] $$

where

$$\begin{aligned}&[\partial Z^t]_{4 \times 3} = \begin{bmatrix} 1&0&\left( c+\dfrac{f_t}{2}\right) \\ 0&1&0 \\ 0&0&-1 \\ 0&0&0 \end{bmatrix} {{{,}}}&[\partial Z^b]_{4 \times 3} = \begin{bmatrix} 1&0&-\left( c+\dfrac{f_b}{2}\right) \\ 0&1&0 \\ 0&0&-1 \\ 0&0&0 \end{bmatrix} {{{,}}} \end{aligned}$$
$$ [\partial Z^c]_{8 \times 9}=\begin{bmatrix} 0&0&0&1&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&\frac{1}{2c}&0&0&0&0&0&-\frac{1}{2c}&0\\ \frac{1}{2c^2}&0&\frac{f_t}{4c^2}&-\frac{1}{c^2}&0&0&\frac{1}{2c^2}&0&-\frac{f_b}{4c^2}\\ 0&\frac{1}{2c^2}&0&0&-\frac{1}{c^2}&0&0&\frac{1}{2c^2}&0 \\ \frac{1}{2c^3}&0&\frac{f_t}{4c^3}&0&0&-\frac{1}{c^2}&-\frac{1}{2c^3}&0&\frac{f_b}{4c^3}\\ 0&0&0&0&0&0&0&0&0 \end{bmatrix} $$

and

$$\begin{aligned}&[CZ^{t,b}]_{4 \times 4} = \begin{bmatrix} [AZ^{t,b}] \; [BZ^{t,b}] \\ [BZ^{t,b}] \; [DZ^{t,b}] \end{bmatrix} {{{,}}}&[CZ^c]_{8 \times 8} = \begin{bmatrix} [AZ^c]&[BZ^c]&[DZ^c]&[EZ^c] \\&[DZ^c]&[EZ^c]&[FZ^c] \\&[FZ^c]&[GZ^c] \\ {{\text {sym.}}}&&[HZ^c] \end{bmatrix} \end{aligned}$$

where,

$$\begin{aligned}&[AZ^x]=\sum \limits _{k=1}^{N_x} \rho ^x_k\,(h_{k-1}-h_{k}) [I_{2\times 2}],&[BZ^x]=\frac{1}{2}\sum \limits _{k=1}^{N_x} \rho ^x_k\,(h_{k-1}^2-h_{k}^2) [I_{2\times 2}],\\&[DZ^x]=\frac{1}{3}\sum \limits _{k=1}^{N_x} \rho ^x_k\,(h_{k-1}^3-h_{k}^3) [I_{2\times 2}]&[EZ^x]=\frac{1}{4}\sum \limits _{k=1}^{N_x} \rho ^x_k\,(h_{k-1}^4-h_{k}^4) [I_{2\times 2}],\\&[FZ^x]=\frac{1}{5}\sum \limits _{k=1}^{N_x} \rho ^x_k\,(h_{k-1}^5-h_{k}^5) [I_{2\times 2}],&[GZ^x]=\frac{1}{6}\sum \limits _{k=1}^{N_x} \rho ^x_k\,(h_{k-1}^6-h_{k}^6) [I_{2\times 2}],\\&[HZ^x]=\frac{1}{7}\sum \limits _{k=1}^{N_x} \rho ^x_k\,(h_{k-1}^7-h_{k}^7) [I_{2\times 2}] \end{aligned}$$

The superscript “x” represents “t”, “b”, or “c” indicating top face sheet, bottom face sheet and \(N_{x}\) indicates the number of layers in the considered face sheet or core and \(\rho _{k}\) the density of the layer “k”.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raja Sekhar, B., Gopalakrishnan, S. (2018). Sandwich Structures Subjected to UNDEX Loading. In: Gopalakrishnan, S., Rajapakse, Y. (eds) Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7170-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7170-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7169-0

  • Online ISBN: 978-981-10-7170-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics