Skip to main content

Bioinspired Layered Composite Principles of Biomineralized Fish Scale

  • Chapter
  • First Online:
Blast Mitigation Strategies in Marine Composite and Sandwich Structures

Abstract

This chapter provides a road map for the current state of knowledge for biomineralized fish scale composite research. Since the fish scale is an analog of bone; detailed descriptions are given for the diverse field of bone research as well. Additionally provided are computational modeling methods that can be used to identify the structure–property relationships for the fish scale. Finally, the chapter integrates the biomaterials, science, and engineering perspectives so that the underlying mechanisms leading to the energy absorptive/dissipative characteristics can be ascertained. The goal of this chapter is to provide a prospectus into the current state of fish scale experimentation and modeling that can be used to develop bioinspired designs for protective structures. While the focus of this chapter is to discuss biomaterials and bioinspired design/analysis of protective structures, the state of knowledge is applicable to composites, aerospace, and biomedical communities of practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wegst, U. G. K., & Ashby, M. F. (2004). The mechanical efficiency of natural materials. Philosophical Magazine, 84(21), 2167–2186.

    Article  Google Scholar 

  2. Weiner, S., Addadi, L., & Wagner, H. D. (2000). Materials design in biology. Materials Science and Engineering C, 11(1), 1–8.

    Article  Google Scholar 

  3. Sire, J. Y., Donoghue, P. C., & Vickaryous, M. K. (2009). Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. Journal of Anatomy, 214(4), 409–440.

    Article  Google Scholar 

  4. Yang, W., Chen, I. H., Mckittrick, J., & Meyers, M. A. (2012). Flexible dermal armor in nature. JOM Journal of the Minerals Metals and Materials Society, 64(4), 475–485.

    Article  Google Scholar 

  5. Song, J. (2011). Multiscale materials design of natural exoskeletons: fish armor (Doctoral dissertation, Massachusetts Institute of Technology).

    Google Scholar 

  6. Cantwell, W. J., & Morton, J. (1991). The impact resistance of composite materials—a review. composites, 22(5), 347–362.

    Google Scholar 

  7. Sela, N., & Ishai, O. (1989). Interlaminar fracture toughness and toughening of laminated composite materials: a review. Composites, 20(5), 423–435.

    Article  Google Scholar 

  8. Chen, P. Y., Schirer, J., Simpson, A., Nay, R., Lin, Y. S., Yang, W., et al. (2012). Predation versus protection: fish teeth and scales evaluated by nanoindentation. Journal of Materials Research, 27(1), 100.

    Article  Google Scholar 

  9. Vernerey, F., & Barthelat, F. (2010). On the mechanics of fishscale structures. International Journal of Solids and Structures, 47(17), 2268–2275.

    Article  MATH  Google Scholar 

  10. Vernerey, F. J., Musiket, K., & Barthelat, F. (2014). Mechanics of fish skin: A computational approach for bio-inspired flexible composites. International Journal of Solids and Structures, 51(1), 274–283.

    Article  Google Scholar 

  11. Zhu, D., Ortega, C. F., Motamedi, R., Szewciw, L., Vernerey, F., & Barthelat, F. (2012). Structure and mechanical performance of a modern fish scale. Advanced Engineering Materials, 14(4), B185–B194.

    Article  Google Scholar 

  12. Zhu, D., Szewciw, L., Vernerey, F., & Barthelat, F. (2013). Puncture resistance of the scaled skin from striped bass: collective mechanisms and inspiration for new flexible armor designs. Journal of the Mechanical Behavior of Biomedical Materials, 24, 30–40.

    Article  Google Scholar 

  13. Gao, H. (2006). Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. International Journal of Fracture, 138(1–4), 101–137.

    Article  MATH  Google Scholar 

  14. Gao, H., & Ji, B. (2004). Modeling fracture in nano materials. In IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics (pp. 307–316). Netherlands: Springer.

    Google Scholar 

  15. Gao, H., Ji, B., Buehler, M. J., & Yao, H. (2004). Flaw tolerant bulk and surface nanostructures of biological systems. Mech. Chem. Biosyst, 1(1), 37–52.

    Google Scholar 

  16. Bruet, B. J., Song, J., Boyce, M. C., & Ortiz, C. (2008). Materials design principles of ancient fish armour. Nature Materials, 7(9), 748–756.

    Article  Google Scholar 

  17. Allison, P. G., Chandler, M. Q., Rodriguez, R. I., Williams, B. A., Moser, R. D., Weiss, C. A., et al. (2013). Mechanical properties and structure of the biological multilayered material system. Atractosteus spatula scales. Acta Biomaterialia, 9(2), 5289–5296.

    Article  Google Scholar 

  18. Browning, A., Ortiz, C., & Boyce, M. C. (2012). Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues. Journal of the Mechanical Behavior of Biomedical Materials, 19, 75–86.

    Article  Google Scholar 

  19. Nelms, M., Hodo, W., & Rajendran, A. M. (2017). A representative volume element based micromechanical analysis of a Bi-layered Ganoid Fish scale. Journal of the Mechanical Behavior of Biomedical Materials, 69, 395–403.

    Article  Google Scholar 

  20. Yang, W., Gludovatz, B., Zimmermann, E. A., Bale, H. A., Ritchie, R. O., & Meyers, M. A. (2013). Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. Acta Biomaterialia, 9(4), 5876–5889.

    Article  Google Scholar 

  21. Meyers, M. A., Lin, A. Y., Seki, Y., Chen, P. Y., Kad, B. K., & Bodde, S. (2006). Structural biological composites: an overview. Journal of Materials, 58(7), 35–41.

    Google Scholar 

  22. Sanderson, K. (2015). Structure: Artificial armour. Nature, 519(7544), S14–S15.

    Article  Google Scholar 

  23. Hollister, S. J., & Kikuchi, N. (1994). Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue. Biotechnology and Bioengineering, 43(7), 586–596.

    Article  Google Scholar 

  24. Jeronimidis, G., & Atkins, A. G. (1995). Mechanics of biological materials and structures: Nature’s lessons for the engineer. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 209(4), 221–235.

    Google Scholar 

  25. Hodo, W. (2015) Investigation of the inherent chemical, structural, and mechanical attributes of bio-engineered composites found in nature: Alligator gar’s exoskeleton fish scales. Ph.D. Dissertation, University of Arkansas, Fayetteville, Arkansas, USA.

    Google Scholar 

  26. Ritchie, R. O., Buehler, M. J., & Hansma, P. (2009). Plasticity and toughness in bone. Physics Today, 62(6), 41–47.

    Article  Google Scholar 

  27. Buehler, M. J. (2010). Multiscale mechanics of biological and biologically inspired materials and structures. Acta Mechanica Solida Sinica, 23(6), 471–483.

    Article  Google Scholar 

  28. Han, L., Wang, L., Song, J., Boyce, M. C., & Ortiz, C. (2011). Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars. Nano Letters, 11(9), 3868–3874.

    Article  Google Scholar 

  29. Chandler, M. Q., Allison, P. G., Rodriguez, R. I., Moser, R. D., & Kennedy, A. J. (2014). Finite element modeling of multilayered structures of fish scales. Journal of the Mechanical Behavior of Biomedical Materials, 40, 375–389.

    Article  Google Scholar 

  30. Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., & Mann, S. (2003). Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology, 142(3), 327–333.

    Article  Google Scholar 

  31. Youn, H. S., & Shin, T. J. (2009). Supramolecular assembly of collagen fibrils into collagen fiber in fish scales of red seabream, Pagrus major. Journal of Structural Biology, 168(2), 332–336.

    Article  Google Scholar 

  32. Torres, F. G., Troncoso, O. P., Nakamatsu, J., Grande, C. J., & Gomez, C. M. (2008). Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima gigas. Materials Science and Engineering C, 28(8), 1276–1283.

    Article  Google Scholar 

  33. Lin, Y. S., Wei, C. T., Olevsky, E. A., & Meyers, M. A. (2011). Mechanical properties and the laminate structure of Arapaima gigas scales. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1145–1156.

    Article  Google Scholar 

  34. Yang, W., Sherman, V. R., Gludovatz, B., Mackey, M., Zimmermann, E. A., Chang, E. H., et al. (2014). Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomaterialia, 10(8), 3599–3614.

    Article  Google Scholar 

  35. Daget, J., Gayet, M., Meunier, F. J., & Sire, J.-Y. (2001). Major discoveries on the dermal skeleton of fossil and recent polypteriforms: a review. Fish and Fisheries, 2, 113–124.

    Article  Google Scholar 

  36. Gottfried, M. D., & Krause, D. W. (1998). First record of gars Lepissteidae Actionoterygii on Madagascar Late Cretaceous remains from the Mahajanga Basin. Journal of Vertebrate Paleontology, 18(2), 275–279.

    Article  Google Scholar 

  37. Oyen, M. L. (2011). Handbook of nanoindentation with biological applications. Singapore, China: Stanford Publishing.

    Google Scholar 

  38. Song, J., Ortiz, C., & Boyce, M. C. (2011). Threat-protection mechanics of an armored fish. Journal of the Mechanical Behavior of Biomedical Materials, 4(5), 699–712.

    Article  Google Scholar 

  39. Tennyson, R. C., Ewert, R., & Niranjan, V. (1972). Dynamic viscoelastic response of bone. Experimental Mechanics, 12(11), 502–507.

    Article  Google Scholar 

  40. National Research Council Commission on Engineering and Technical Systems National Materials Advisory Board. (1994). Hierarchical Structures in Biology as a Guide for New Materials Technology. NMAB-64, National Academy Press, Washington, D.C.

    Google Scholar 

  41. Boskey, A. L. (2007). Mineralization of bones and teeth. Elements, 3(6), 385–391.

    Article  Google Scholar 

  42. Mann, S. (2001). Biomineralization principles and concepts in bioinorganic materials chemistry. New York: Oxford University Press.

    Google Scholar 

  43. Rai, R. K., & Sinha, N. (2011). Dehydration-induced structural changes in the Collagen-Hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. The Journal of Physical Chemistry C, 115, 14219–14227.

    Article  Google Scholar 

  44. Bembey, A. K., Bushby, A. J., Boyde, A., Ferguson, V. L., & Oyen, M. L. (2006). Hydration effects on the micro-mechanical properties of bone. Journal of Materials Research, 21(08), 1962–1968.

    Article  Google Scholar 

  45. Bembey, A. K., Oyen, M. L., Bushby, A. J., & Boyde, A. (2006). Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philosophical Magazine, 86(33–35), 5691–5703.

    Article  Google Scholar 

  46. Bertassoni, L. E., & Swain, M. V. (2012). Influence of hydration on nanoindentation induced energy expenditure of dentin. Journal of Biomechanics, 45(9), 1679–1683.

    Article  Google Scholar 

  47. Garrano, A. M. C., La Rosa, G., Zhang, D., Niu, L. N., Tay, F. R., Majd, H., et al. (2012). On the mechanical behavior of scales from Cyprinus carpio. Journal of the Mechanical Behavior of Biomedical Materials, 7, 17–29.

    Article  Google Scholar 

  48. Rho, J. Y., & Pharr, G. M. (1999). Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. Journal of Materials Science Materials in Medicine, 10(8), 485–488.

    Article  Google Scholar 

  49. Rodriguez-Florez, N., Oyen, M. L., & Shefelbine, S. J. (2013). Insight into differences in nanoindentation properties of bone. Journal of the Mechanical Behavior of Biomedical Materials, 18, 90–99.

    Article  Google Scholar 

  50. Hughes, C. E., & White, C. A. (2009). Crack propagation in teeth: A comparison of perimortem and postmortem behavior of dental materials and cracks. Journal of Forensic Sciences, 54(2), 263–266.

    Google Scholar 

  51. Kishen, A., & Asundi, A. (2005). Experimental investigation on the role of water in the mechanical behavior of structural dentine. Journal of Biomedical Materials Research, Part A, 73(2), 192–200.

    Article  Google Scholar 

  52. Lievers, W. B., Lee, V., Arsenault, S. M., Waldman, S. D., & Pilkey, A. K. (2007). Specimen size effect in the volumetric shrinkage of cancellous bone measured at two levels of dehydration. Journal of Biomechanics, 40(9), 1903–1909.

    Article  Google Scholar 

  53. Lievers, W. B., Poljsak, A. S., Waldman, S. D., & Pilkey, A. K. (2010). Effects of dehydration-induced structural and material changes on the apparent modulus of cancellous bone. Medical Engineering & Physics, 32(8), 921–925.

    Article  Google Scholar 

  54. Panighi, M., & G’Sell, C. (1993). Effect of the tooth microstructure on the shear bond strength of a dental composite. Journal of Biomedical Materials Research, Part A, 27(8), 975–981.

    Article  Google Scholar 

  55. Wood, J. D., Wang, R., Weiner, S., & Pashley, D. H. (2003). Mapping of tooth deformation caused by moisture change using moiré interferometry. Dental Materials, 19(3), 159–166.

    Article  Google Scholar 

  56. Yang, W., Chen, I. H., Gludovatz, B., Zimmermann, E. A., Ritchie, R. O., & Meyers, M. A. (2013). Natural flexible dermal armor. Advanced Materials, 25(1), 31–48.

    Article  Google Scholar 

  57. Gupta, H. S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P., & Fratzl, P. (2006). Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences, 103(47), 17741–17746.

    Article  Google Scholar 

  58. Öchsner, A., & Ahmed, W. (Eds.). (2011). Biomechanics of Hard Tissues. Wiley.

    Google Scholar 

  59. Nelms, M. (2014) Finite element analysis of shear resistant mechanisms for biolaminate interfaces. Masters Thesis, University of Mississippi, Oxford, Mississippi, USA.

    Google Scholar 

  60. Wang, L., Song, J., Ortiz, C., & Boyce, M. C. (2009). Anisotropic design of a multilayered biological exoskeleton. Journal of Materials Research, 24(12), 3477–3494.

    Article  Google Scholar 

  61. Hamed, E., & Jasiuk, I. (2012). Elastic modeling of bone at nanostructural level. Materials Science and Engineering: R: Reports, 73(3), 27–49.

    Article  Google Scholar 

  62. Zimmermann, E. A., Gludovatz, B., Schaible, E., Dave, N. K., Yang, W., Meyers, M. A., & Ritchie, R. O. (2013). Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nature communications, 4.

    Google Scholar 

  63. Halpin, J. C., & Tsai, S. W. (1967). Environmental factors estimation in composite materials design. AFML Trans, 67–423.

    Google Scholar 

  64. Currey, J. D. (1969). The relationship between the stiffness and the mineral content of bone. Journal of Biomechanics, 2(4), 477–480.

    Article  Google Scholar 

  65. Padawer, G. E., & Beecher, N. (1970). On the strength and stiffness of planar reinforced plastic resins. Polymer Engineering & Science, 10(3), 185–192.

    Article  Google Scholar 

  66. Lusis, J., Woodhams, R. T., & Xanthos, M. (1973). The effect of flake aspect ratio on the flexural properties of mica reinforced plastics. Polymer Engineering & Science, 13(2), 139–145.

    Article  Google Scholar 

  67. Weiner, S., & Wagner, H. D. (1998). The material bone: structure-mechanical function relations. Annual Review of Materials Science, 28(1), 271–298.

    Article  Google Scholar 

  68. Jäger, I., & Fratzl, P. (2000). Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophysical Journal, 79(4), 1737–1746.

    Article  Google Scholar 

  69. Goodsell, D. S. (2004). Bionanotechnology: lessons from nature. Wiley.

    Google Scholar 

  70. Carretta, R., Lorenzetti, S., & Müller, R. (2012). Towards patient‐specific material modeling of trabecular bone post‐yield behavior. International journal for numerical methods in biomedical engineering.

    Google Scholar 

  71. Carpinteri, A., Cornetti, P., Pugno, N. M., & Sapora, A. (2008). Fractals to model hierarchical biomaterials. In Advances in Science and Technology (Vol. 58, pp. 54–59). Trans Tech Publications.

    Google Scholar 

  72. Cho, Y., Shin, J. H., Costa, A., Kim, T. A., Kunin, V., Li, J., et al. (2014). Engineering the shape and structure of materials by fractal cut. Proceedings of the National Academy of Sciences, 111(49), 17390–17395.

    Article  Google Scholar 

  73. Pothuaud, L., Benhamou, C. L., Porion, P., Lespessailles, E., Harba, R., & Levitz, P. (2000). Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture. Journal of Bone and Mineral Research, 15(4), 691–699.

    Article  Google Scholar 

  74. Ji, B., & Gao, H. (2010). Mechanical principles of biological nanocomposites. Annual Review of Materials Research, 40, 77–100.

    Article  Google Scholar 

  75. Launey, M. E., Buehler, M. J., & Ritchie, R. O. (2010). On the mechanistic origins of toughness in bone. Annual Review of Materials Research, 40, 25–53.

    Article  Google Scholar 

  76. Alexander, T., Antonis, L., Savvas, S., & Nikolaos, M. (2012). Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response. 3D. Research, 3(2), 1–10.

    Google Scholar 

  77. Katz, J. L., Misra, A., Spencer, P., Wang, Y., Bumrerraj, S., Nomura, T., et al. (2007). Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. Materials Science and Engineering C, 27(3), 450–468.

    Article  Google Scholar 

  78. Fritsch, A., Hellmich, C.,& Young, P. (2011) Porosity-dependent elasticity and strength of ceramic bone biomaterials: Micromechanics-based assessment of power functions. Baumgartner, C. Biomedical Engineering. (2011). Paper presented at IASTED International Conference: Bimedical Engineering, Innsbruck. Austria. Online: Actapress.

    Google Scholar 

  79. Gautieri, A., Pate, M. I., Vesentini, S., Redaelli, A., & Buehler, M. J. (2012). Hydration and distance dependence of intermolecular shearing between collagen molecules in a model microfibril. Journal of biomechanics, 45(12), 2079–2083.

    Google Scholar 

  80. Buehler, M. J., & Wong, S. Y. (2007). Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophysical Journal, 93(1), 37–43.

    Article  Google Scholar 

  81. Gautieri, A., Buehler, M. J., & Redaelli, A. (2009). Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. Journal of the Mechanical Behavior of Biomedical Materials, 2(2), 130–137.

    Article  Google Scholar 

  82. Gautieri, A., Vesentini, S., Montevecchi, F. M., & Redaelli, A. (2008). Mechanical properties of physiological and pathological models of collagen peptides investigated via steered molecular dynamics simulations. Journal of Biomechanics, 41(14), 3073–3077.

    Article  Google Scholar 

  83. Buehler, M. J. (2006). Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences, 103(33), 12285–12290.

    Article  Google Scholar 

  84. Buehler, M. J. (2007). Hierarchical chemo-nanomechanics of proteins: Entropic elasticity, protein unfolding and molecular fracture. Journal of Mechanics of Materials and Structures, 2(6), 1019–1057.

    Article  Google Scholar 

  85. Buehler, M. J., & Ackbarow, T. (2007). Fracture mechanics of protein materials. Materials Today, 10(9), 46–58.

    Article  Google Scholar 

  86. Qi, H. J., Ortiz, C., & Boyce, M. C. (2006). Mechanics of biomacromolecular networks containing folded domains. Transactions-American Society of Mechanical Engineers Journal of Engineering Materials And Technology, 128(4), 509.

    Google Scholar 

  87. Eom, K., Yoon, G., Kim, J. I., & Na, S. (2010). Coarse-grained elastic models of protein structures for understanding their mechanics and dynamics. Journal of Computational and Theoretical Nanoscience, 7(7), 1210–1226.

    Article  Google Scholar 

  88. Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2011). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Letters, 11(2), 757–766.

    Article  Google Scholar 

  89. Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2012). Viscoelastic properties of model segments of collagen molecules. Matrix Biology, 31(2), 141–149.

    Article  Google Scholar 

  90. Qin, Z., Gautieri, A., Nair, A. K., Inbar, H., & Buehler, M. J. (2012). Thickness of Hydroxyapatite nanocrystal controls mechanical properties of the collagen–Hydroxyapatite interface. Langmuir, 28(4), 1982–1992. Raton, FL: Taylor and Francis.

    Google Scholar 

  91. Fantner, G. E., Hassenkam, T., Kindt, J. H., Weaver, J. C., Birkedal, H., Pechenik, L., et al. (2005). Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials, 4(8), 612–616.

    Article  Google Scholar 

  92. Marko, J. F., & Siggia, E. D. (1995). Stretching DNA. Macromolecules, 28(26), 8759–8770.

    Article  Google Scholar 

  93. Jernigan, R. L., & Flory, P. J. (1969). Moments of chain vectors for models of polymer chains. The Journal of Chemical Physics, 50(10), 4178–4185.

    Article  Google Scholar 

  94. Boyce, M. C., & Arruda, E. M. (2000). Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology, 73(3), 504–523.

    Article  Google Scholar 

  95. Marko, J. F. (1997). Stretching must twist DNA. EPL (Europhysics Letters), 38(3), 183.

    Article  Google Scholar 

  96. Keten, S., & Buehler, M. J. (2008). Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Letters, 8(2), 743–748.

    Article  Google Scholar 

  97. Tai, K., Dao, M., Suresh, S., Palazoglu, A., & Ortiz, C. (2007). Nanoscale heterogeneity promotes energy dissipation in bone. Nature materials, 6(6), 454–462.

    Article  Google Scholar 

  98. Tõnsuaadu, K., Gross, K. A., Plūduma, L., & Veiderma, M. (2012). A review on the thermal stability of calcium apatites. Journal of Thermal Analysis and Calorimetry, 110(2), 647–659.

    Article  Google Scholar 

  99. Pistoia, W., Van Rietbergen, B., Lochmüller, E. M., Lill, C. A., Eckstein, F., & Rüegsegger, P. (2002). Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone, 30(6), 842–848.

    Article  Google Scholar 

  100. Schileo, E., Taddei, F., Cristofolini, L., & Viceconti, M. (2008). Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Journal of Biomechanics, 41(2), 356–367.

    Article  Google Scholar 

  101. Carnelli, D., Gastaldi, D., Sassi, V., Contro, R., Ortiz, C., & Vena, P. (2010). A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. Journal of Biomechanical Engineering, 132(8), 081008.

    Article  Google Scholar 

  102. Shuchun, Z., & Yueguang, W. (2007). Effective elastic modulus of bone-like hierarchical materials. Acta Mechanica Solida Sinica, 20(3), 198–205.

    Article  Google Scholar 

  103. Charlebois, M., Jirásek, M., & Zysset, P. K. (2010). A nonlocal constitutive model for trabecular bone softening in compression. Biomechanics and Modeling in Mechanobiology, 9(5), 597–611.

    Article  Google Scholar 

  104. Mercer, C., He, M. Y., Wang, R., & Evans, A. G. (2006). Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomaterialia, 2(1), 59–68.

    Article  Google Scholar 

  105. Natali, A. N., Carniel, E. L., & Pavan, P. G. (2008). Constitutive modelling of inelastic behaviour of cortical bone. Medical Engineering & Physics, 30(7), 905–912.

    Article  Google Scholar 

  106. Cezayirlioglu, H., Bahniuk, E., Davy, D. T., & Heiple, K. G. (1985). Anisotropic yield behavior of bone under combined axial force and torque. Journal of Biomechanics, 18(1), 61–69.

    Article  Google Scholar 

  107. Johnson, T. P. M., Socrate, S., & Boyce, M. C. (2010). A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomaterialia, 6(10), 4073–4080.

    Article  Google Scholar 

  108. Ehlers, W., Karajan, N., & Markert, B. (2006). A porous media model describing the inhomogeneous behaviour of the human intervertebral disc. Materialwissenschaft und Werkstofftechnik, 37(6), 546–551.

    Article  Google Scholar 

  109. Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27–35.

    Article  Google Scholar 

  110. Stölken, J. S., & Kinney, J. H. (2003). On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone, 33(4), 494–504.

    Article  Google Scholar 

  111. Barkaoui, A., & Hambli, R. (2014). Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Computer Methods in Biomechanics and Biomedical Engineering, 17(14), 1590–1601.

    Article  Google Scholar 

  112. Hambli, R., & Barkaoui, A. (2012). Physically based 3D finite element model of a single mineralized collagen microfibril. Journal of Theoretical Biology, 301, 28–41.

    Article  Google Scholar 

  113. Akiva, U., Wagner, H. D., & Weiner, S. (1998). Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. Journal of Materials Science, 33(6), 1497–1509.

    Article  Google Scholar 

  114. Verhulp, E., van Rietbergen, B., Müller, R., & Huiskes, R. (2008). Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. Journal of Biomechanics, 41(7), 1479–1485.

    Article  Google Scholar 

  115. Yeh, O. C., & Keaveny, T. M. (2001). Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. Journal of Orthopaedic Research, 19(6), 1001–1007.

    Article  Google Scholar 

  116. Keaveny, T. M., Wachtel, E. F., Zadesky, S. P., & Arramon, Y. P. (1999). Application of the Tsai–Wu quadratic multiaxial failure criterion to bovine trabecular bone. Journal of Biomechanical Engineering, 121(1), 99–107.

    Article  Google Scholar 

  117. Zysset, P., & Rincón, L. (2006). An alternative fabric-based yield and failure criterion for trabecular bone. In Mechanics of Biological Tissue (pp. 457–470). Berlin Heidelberg: Springer.

    Google Scholar 

  118. Moore, T. A., & Gibson, L. J. (2002). Microdamage accumulation in bovine trabecular bone in uniaxial compression. Journal of Biomechanical Engineering, 124(1), 63–71.

    Article  Google Scholar 

  119. Kosmopoulos, V., & Keller, T. S. (2003). Finite element modeling of trabecular bone damage. Computer Methods in Biomechanics and Biomedical Engineering, 6(3), 209–216.

    Article  Google Scholar 

  120. Kosmopoulos, V., Schizas, C., & Keller, T. S. (2008). Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. Journal of Biomechanics, 41(3), 515–522.

    Article  Google Scholar 

  121. Kosmopoulos, V., & Keller, T. S. (2008). Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model. Medical Engineering & Physics, 30(6), 725–732.

    Article  Google Scholar 

  122. Garcia, D., Zysset, P. K., Charlebois, M., & Curnier, A. (2009). A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomechanics and Modeling in Mechanobiology, 8(2), 149–165.

    Article  MATH  Google Scholar 

  123. Buehler, M. J. (2006). Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. Journal of Materials Research, 21(08), 1947–1961.

    Article  Google Scholar 

  124. Buehler, M. J. (2006). Mechanics of protein crystals: Atomistic modeling of elasticity and fracture. Journal of Computational and Theoretical Nanoscience, 3(5), 670–683.

    Article  Google Scholar 

  125. Buehler, M. J. (2007). Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology, 18(29), 295102.

    Google Scholar 

  126. Buehler, M. J. (2007). Nano-and micromechanical properties of hierarchical biological materials and tissues. Journal of Materials Science, 42(21), 8765–8770.

    Article  Google Scholar 

  127. Buehler, M. J. (2008). Molecular architecture of collagen fibrils: a critical length scale for tough fibrils. Current Applied Physics, 8(3), 440–442.

    Article  Google Scholar 

  128. Buehler, M. J. (2008). Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 59–67.

    Article  Google Scholar 

  129. Buehler, M. J. (2009, January). Defining nascent bone by the molecular nanomechanics of mineralized collagen fibrils. In ASME 2009 International Mechanical Engineering Congress and Exposition (pp. 795–798). American Society of Mechanical Engineers.

    Google Scholar 

  130. Buehler, M. J., Yao, H., Ji, B., & Gao, H. (2005). Atomistic and continuum studies of flaw tolerant nanostructures in biological systems. In Materials Research Society Symposium Proceedings (Vol. 844, p. 207). Warrendale, Pa.; Materials Research Society; 1999.

    Google Scholar 

  131. Chevalier, Y., Charlebois, M., Pahr, D., Varga, P., Heini, P., Schneider, E., et al. (2008). A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Computer methods in biomechanics and biomedical engineering, 11(5), 477–487.

    Article  Google Scholar 

  132. Gupta, H. S., Wagermaier, W., Zickler, G. A., Hartmann, J., Funari, S. S., Roschger, P., et al. (2006). Fibrillar level fracture in bone beyond the yield point. International Journal of Fracture, 139(3–4), 425–436.

    Article  MATH  Google Scholar 

  133. Gupta, H. S., Wagermaier, W., Zickler, G. A., Raz-Ben Aroush, D., Funari, S. S., Roschger, P., et al. (2005). Nanoscale deformation mechanisms in bone. Nano Letters, 5(10), 2108–2111.

    Article  Google Scholar 

  134. Gupta, H. S., & Zioupos, P. (2008). Fracture of bone tissue: The hows and the whys. Medical Engineering & Physics, 30(10), 1209–1226.

    Article  Google Scholar 

  135. Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., & Mann, S. (2003b). Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules, 32(3), 199-204. International, 48, 407–413.

    Google Scholar 

  136. Katz, J. L. (1971). Hard tissue as a composite material—I. Bounds on the elastic behavior. Journal of Biomechanics, 4(5), 455–473.

    Article  Google Scholar 

  137. Libonati, F., Nair, A. K., Vergani, L., & Buehler, M. J. (2013). Fracture mechanics of hydroxyapatite single crystals under geometric confinement. Journal of the Mechanical Behavior of Biomedical Materials, 20, 184–191.

    Article  Google Scholar 

  138. Peterlik, H., Roschger, P., Klaushofer, K., & Fratzl, P. (2005). From brittle to ductile fracture of bone. Nature Materials, 5(1), 52–55.

    Article  MATH  Google Scholar 

  139. Ritchie, R. O., Kinney, J. H., Kruzic, J. J., & Nalla, R. K. (2005). A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue and Fracture of Engineering Materials and Structures, 28(4), 345–371.

    Article  Google Scholar 

  140. Srinivasan, A. V., Haritos, G. K., Healberg, H. L., & Jones, W. F. (1996). Biomimetics: Advancing man-made materials through guidance from nature-Update. Applied Mechanics Reviews, 49, S194–S200.

    Article  Google Scholar 

  141. Tang, Y., Ballarini, R., Buehler, M. J., & Eppell, S. J. (2010). Deformation micromechanisms of collagen fibrils under uniaxial tension. Journal of the Royal Society, Interface, 7(46), 839–850.

    Article  Google Scholar 

  142. Carlisle, C. R., Coulais, C., & Guthold, M. (2010). The mechanical stress–strain properties of single electrospun collagen type I nanofibers. Acta biomaterialia, 6(8), 2997–3003.

    Google Scholar 

  143. Saber-Samandari, S., & Gross, K. A. (2010). The use of thermal printing to control the properties of calcium phosphate deposits. Biomaterials, 31(25), 6386–6393.

    Google Scholar 

  144. Nudelman, F., Pieterse, K., George, A., Bomans, P. H., Friedrich, H., Brylka, L. J., ... & Sommerdijk, N. A. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature materials, 9(12), 1004–1009.

    Google Scholar 

  145. Song, J., Reichert, S., Kallai, I., Gazit, D., Wund, M., Boyce, M. C., & Ortiz, C. (2010). Quantitative microstructural studies of the armor of the marine threespine stickleback (Gasterosteus aculeatus). Journal of structural biology, 171(3), 318–331.

    Google Scholar 

  146. Wegst, U., Schecter, M., Donius, A., and Hunger, P. (2010). “Biomaterials by Freeze Casting.” Philosophical Transactions of The Royal Society: A 368: 2099–2121.

    Google Scholar 

Download references

Acknowledgements

The authors from the University of Mississippi, Oxford and US. Army ERDC, Vicksburg, MS acknowledge the support by the US. Army Research Office under a cooperative agreement award contract No. W911NF-11-2-0043 (Program Manager: Dr. Joseph Myers) and US. Army Research Office under a cooperative agreement award contracts No. W911NF-11-2-0043 (Program Manager: Dr. Joseph Myers), No. W911NF-14-2-0119 (Program Manager: David Grove) and the US. Army ERDC Military Engineering 6.1-ILIR Basic Research Project on “Investigation of Delamination Resistant Bio-Laminates”. Permission granted to publish by the ARO and US Army ERDC-GSL. Additionally, discussions with several researchers at Engineering Research and Development Center, Vicksburg, MS, and US. Army Research Laboratory are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Nelms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nelms, M.D., Hodo, W.D., Rajendran, A.M. (2018). Bioinspired Layered Composite Principles of Biomineralized Fish Scale. In: Gopalakrishnan, S., Rajapakse, Y. (eds) Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7170-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7170-6_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7169-0

  • Online ISBN: 978-981-10-7170-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics