Skip to main content

Wave Propagation and Dynamic Correction Factors for Composite Structures

  • Chapter
  • First Online:
Book cover Blast Mitigation Strategies in Marine Composite and Sandwich Structures
  • 1347 Accesses

Abstract

Shear and normal correction factors are used within first-order Equivalent Single Layer theories in order to improve the description of the transverse strains and the accuracy of the solutions of static and dynamic problems in layered structures. Dynamic correction factors may be derived by imposing that certain wave propagation frequencies, e.g., the first cut-off frequencies of the thickness-modes as originally proposed by Mindlin, match those of three-dimensional elasticity. The exact frequencies can be derived only through complex computational procedures and, as a consequence, correction factors obtained for homogeneous plates are typically used also for layered plates, at the expense of accuracy. In this chapter, we consider cross-ply laminated plates with arbitrary layups and elastic constants and show how using a homogenized zig-zag structural theory allows the accurate closed-form derivation of the first thickness-modes and the dynamic correction factors of first-order equivalent single layer theories. The correction factors accurately reproduce those obtained by matching the exact elasticity solutions in highly inhomogeneous bilayer media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mindlin, R. D. (1951). Thickness-shear and flexural vibrations of crystal plates. Journal of Applied Physics, 22, 316.

    Article  MathSciNet  MATH  Google Scholar 

  2. Kane, T. R., & Mindlin, R. D. (1956). High-frequency extensional vibrations of plates. Journal of Applied Mechanics, 23, 277–283.

    MathSciNet  MATH  Google Scholar 

  3. Massabò, R. (2017). Propagation of Rayleigh-Lamb waves in multilayered plates through a multiscale structural model. Int Journal of Solids and Structures, 124, 108–124.

    Google Scholar 

  4. Massabò, R., & Campi, F. (2014). An efficient approach for multilayered beams and wide plates with imperfect interfaces and delaminations. Composite Structures, 116, 311–324.

    Article  Google Scholar 

  5. Di Sciuva, M. (1986). Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: An evaluation of a new displacement model. Journal of Sound and Vibrations, 105(3), 425–442.

    Article  Google Scholar 

  6. Noor, A. K., & Burton, W. S. (1989). Assessment of shear deformation theories for multilayered composite plates. Applied Mechanics Reviews, 42(1), 1–13.

    Article  Google Scholar 

  7. Ghugal, Y. M., & Shimpi, R. P. (2002). A review of refined shear deformation theories of isotropic and anisotropic laminated plates. Journal of Reinforced Plastics and Composites, 21(9).

    Google Scholar 

  8. Yang, P. C., Norris, C. H., & Stavsky, Y. (1966). Elastic wave propagation in heterogeneous plates. International Journal of Solids and Structures, 2, 665–684.

    Article  Google Scholar 

  9. Whitney, J. M., & Sun, C. T. (1973). A higher order theory for extensional motion of laminated composites. Journal of Sound and Vibration, 30, 85.

    Article  MATH  Google Scholar 

  10. Chow, T. S. (1971). On the propogation of flexural waves in an orthotropic laminated plate and its response to an impulsive load. Journal of Composite Materials, 5, 306–319.

    Article  Google Scholar 

  11. Whitney, J. M. (1973). Shear correction factors for orthotropic laminates under static load. ASME Journal of Applied Mechanics, 40(1), 303–304.

    Article  Google Scholar 

  12. Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics, 12, 69–77.

    MathSciNet  MATH  Google Scholar 

  13. Noor, A. K., & Burton, W. S. (1989). Stress and free vibration analyses of multilayered composite plates. Computers & Structures, 11, 183–204.

    Article  Google Scholar 

  14. Auricchio, F., & Sacco, E. (1999). A mixed-enhanced finite-element for the analysis of laminated composite plates. International Journal for Numerical Methods in Engineering, 44, 1481–1504.

    Article  MATH  Google Scholar 

  15. Mindlin, R. D., & Deresiewicz, H. (1953). Timoshenko’s shear coefficient for flexural vibrations of beams. Technical Report, no. 10, ONR project NR 064-388, Columbia University.

    Google Scholar 

  16. Jones, J. P. (1964). Wave propagation in two-layered medium. Journal of Applied Mechanics, 31, 213.

    Article  MathSciNet  MATH  Google Scholar 

  17. Chatterjee, S. N., & Kulkarni, S. V. (1979). Shear correction factors for laminated plates. AIAA Journal, 17, 498–499.

    Article  Google Scholar 

  18. Chatterjee, S. N., & Kulkarni, S. V. (1978). Effects of environment damping and coupling properties of composite laminates on panel flutter, ADA055753, AFORS-TR-78-1066.

    Google Scholar 

  19. Stephen, N. G. (1981). Considerations on second order beam theories. International Journal of Solids and Structures, 17, 325–333.

    Article  MathSciNet  MATH  Google Scholar 

  20. Stephen, N. G. (1997). Mindlin plate theory: best shear coefficient and higher spectra validity. Journal of Sound and Vibration, 202, 539–553.

    Article  Google Scholar 

  21. Liu, L., & Bhattacharya, K. (2009). Wave propagation in a sandwich structure. International Journal of Solids and Structures, 46, 3290–3300.

    Article  MATH  Google Scholar 

  22. Cheng, Z. Q., Jemah, A. K., & Williams, F. W. (1996). Theory for multilayered anisotropic plates with weakened interfaces. Journal of Applied Mechanics, 63, 1019–1026.

    Article  MATH  Google Scholar 

  23. Di Sciuva, M. (1997). An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates. AIAA Journal, 35(11), 1753–1759.

    Article  MATH  Google Scholar 

  24. Librescu, L., & Schmidt, R. (2001). A general theory of laminated composite shells featuring interlaminar bonding imperfections. International Journal of Solids and Structures, 3355–3375.

    Google Scholar 

  25. Massabò, R., & Campi, F. (2015). Assessment and correction of theories for multilayered plates with imperfect interfaces. Meccanica, 50, 1045–1061.

    Article  MathSciNet  MATH  Google Scholar 

  26. Viverge, K., Boutin, C., & Sallet, F. (2016). Model of highly contrasted plates versus experiments on laminated glass. International Journal of Solids and Structures, 102–103, 238–258.

    Article  Google Scholar 

  27. Nanda, N., Kapuria, S., & Gopalakrishnan, S. (2014). Spectral finite element based on an efficient layerwise theory for wave propagation analysis of composite and sandwich beams. Journal of Sound and Vibration, 3120–3137.

    Google Scholar 

  28. Pelassa, M., & Massabò, R. (2015). Explicit solutions for multi-layered wide plates beams with perfect and imperfect bonding and delaminations under thermo-mechanical loading. Meccanica, 50, 2497–2524.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, C.-T., & Whitney, J. M. (1972). On theories for the dynamic response of laminated plates. In AIAA/ASNE/SAE 13th Structures, Structural Dynamics and Materials Conference, San Antonio, Texas, AIAA paper no. 72-398.

    Google Scholar 

  30. Massabò, R. (2017). Cut-off frequencies and correction factors of equivalent single layer theories. Procedia Engineering, 199, 1466–1471.

    Google Scholar 

Download references

Acknowledgements

The support of the U.S. Office of Naval Research, ONR, grants no: N00014-14-1-0254 and N00014-17-1-2914 monitored by Dr. Y. D. S. Rajapakse and of the (MURST) Italian Department for University and Scientific and Technological Research, MIUR Prin15 project 2015LYYXA8, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Massabò .

Editor information

Editors and Affiliations

Appendices

Appendix 1

The coefficients in the expressions of the macro-scale displacement field of the homogenized model assuming perfect bonding of the layers are [4]:

$$ R_{S22}^{k} (x_{3} ) = \sum\limits_{i = 1}^{k - 1} {\left[ \begin{aligned} \hfill \\ \hfill \\ \end{aligned} \right.} \varLambda_{22}^{{\left( {1;i} \right)}} \left( {x_{3} - x_{3}^{i} } \right)\left. \begin{aligned} \hfill \\ \hfill \\ \end{aligned} \right] $$
$$ R_{N22}^{k} (x_{3} ) = \sum\limits_{i = 1}^{k - 1} {\left[ {\varLambda_{22}^{{\left( {1;i} \right)}} x_{3}^{1} + \sum\limits_{l = 2}^{i} {\varLambda_{22}^{{\left( {l;i} \right)}} \left( {x_{3}^{l} - x_{3}^{l - 1} } \right)\left( {1 + \sum\limits_{j = 1}^{l - 1} {\varLambda_{33}^{\left( j \right)} } } \right)} } \right.} \left. \begin{aligned} \hfill \\ \hfill \\ \end{aligned} \right]\left( {x_{3} - x_{3}^{i} } \right) $$
$$ \varLambda_{22}^{{\left( {1;i} \right)}} = {}^{(1)}C_{44} \left( {\frac{1}{{{}^{(i + 1)}C_{44} }} - \frac{1}{{{}^{(i)}C_{44} }}} \right) $$
(15)
$$ \varLambda_{33}^{\left( i \right)} = - {}^{(1)}C_{33} \left( {\frac{{{}^{(i + 1)}C_{33} - {}^{(i)}C_{33} }}{{{}^{(i + 1)}C_{33} {}^{(i)}C_{33} }}} \right) $$

The coefficients in the equations of the homogenized model which describe the thickness-shear and -stretch modes assuming perfect bonding of the layers are given below [3, 30]:

$$ (R_{0}^{{}} \,,R_{1}^{{}} ,R_{2}^{{}} ,R_{1}^{N} ,R_{2}^{N} ) = \int\limits_{h} {\rho (1,x_{3} ,x_{3}^{2} ,x_{3} ,x_{3}^{2} )dx_{3} + (0,R^{0S} ,2R^{1S} + R^{S2} ,R^{0N} ,2R^{1N} + R^{N2} } ) $$
$$ A_{44}^{{}} \, = k_{44} C_{44}^{P}, $$
$$ A_{33}^{{}} \, = k_{3} C_{33}^{P}, $$
$$ C_{44}^{P} = \sum\limits_{k = 1}^{n} {{}^{(k)}C_{44}^{{}} \int\limits_{{x_{3}^{k - 1} }}^{{x_{3}^{k} }} {\left( {1 + \sum\limits_{i = 1}^{k - 1} {\varLambda_{22}^{{\left( {1;i} \right)}} } } \right)^{2} } dx_{3} }, $$
$$ C_{33}^{P} = \sum\limits_{k = 1}^{n} {{}^{(k)}C_{33}^{{}} \int\limits_{{x_{3}^{k - 1} }}^{{x_{3}^{k} }} {\left( {1 + \sum\limits_{i = 1}^{k - 1} {\varLambda_{33}^{\left( j \right)} } } \right)^{2} } dx_{3} } , $$
$$ R_{{}}^{rS} = \sum\limits_{k = 1}^{n} {{}^{(k)}\rho \int\limits_{{x_{3}^{k - 1} }}^{{x_{3}^{k} }} {\left( {x_{3} } \right)^{r} \sum\limits_{i = 1}^{k - 1} {\left[ {\varLambda_{22}^{{\left( {1;i} \right)}} \left( {x_{3} - x_{3}^{i} } \right)} \right]} dx_{3} } }, $$
$$ R_{{}}^{S2} = \sum\limits_{k = 1}^{n} {{}^{(k)}\rho \int\limits_{{x_{3}^{k - 1} }}^{{x_{3}^{k} }} {\left( {\sum\limits_{i = 1}^{k - 1} {\left[ {\varLambda_{22}^{{\left( {1;i} \right)}} \left( {x_{3} - x_{3}^{i} } \right)} \right]} } \right)^{2} dx_{3} } } , $$
(16)
$$ R_{{}}^{rN} = \sum\limits_{k = 1}^{n} {{}^{(k)}\rho \int\limits_{{x_{3}^{k - 1} }}^{{x_{3}^{k} }} {\left( {x_{3} } \right)^{r} \sum\limits_{i = 1}^{k - 1} {\varLambda_{33}^{\left( i \right)} \left( {x_{3} - x_{3}^{i} } \right)} dx_{3} } }, $$
$$ R^{N2} = \sum\limits_{k = 1}^{n} {{}^{(k)}\rho \int\limits_{{x_{3}^{k - 1} }}^{{x_{3}^{k} }} {\left\{ {\sum\limits_{i = 1}^{k - 1} {\varLambda_{33}^{\left( i \right)} \left( {x_{3} - x_{3}^{i} } \right)} } \right\}^{2} dx_{3} } }. $$

Under the assumptions of the first-order equivalent single layer theories the coefficients above simplify as:

$$ (R_{0}^{{}} \,,R_{1}^{ESL} ,R_{2}^{ESL} ,R_{1}^{N,ESL} ,R_{2}^{N,ESL} ) = \int\limits_{h} {\rho (1,x_{3} ,x_{3}^{2} ,x_{3} ,x_{3}^{2} )dx_{3} }, $$
$$ A_{44}^{ESL} = k_{44}^{ESL} \int\limits_{h} {C_{44} dx_{3} }, $$
$$ A_{33}^{ESL} = k_{33}^{ESL} \int\limits_{h} {C_{33} dx_{3} } .$$
(17)

Appendix 2

The elasticity frequency equation of the thickness-shear mode of propagation in an isotropic bilayer with f and c the thicknesses of the layers and \( G_{f} \) and \( G_{c} \) the corresponding shear moduli in the plane \( x_{2} - x_{3} \), has been derived in [8, 16] as the limit for wavelengths approaching infinity of the Rayleigh–Lamb equation:

$$ \beta_{f} \sin (\beta_{f} f)\cos \beta_{c} c + \left( {{{G_{c} } \mathord{\left/ {\vphantom {{G_{c} } {G_{f} }}} \right. \kern-0pt} {G_{f} }}} \right)\beta_{c} \sin (\beta_{c} c)\cos (\beta_{f} f) = 0 $$
(18)

with \( \beta_{i}^{2} = \omega^{2} \rho_{i} /G_{i} \). The exact cut-off frequency of the first thickness-stretch mode for a bilayer with \( M_{f} \) and \( M_{c} \) the P-waves moduli are defined by the first root of the frequency equation:

$$ \left( {{{\alpha_{c} } \mathord{\left/ {\vphantom {{\alpha_{c} } {\alpha_{f} }}} \right. \kern-0pt} {\alpha_{f} }}} \right)\beta_{f}^{2} \sin (\alpha_{f} f)\cos (\alpha_{c} c) + \left( {{{G_{c} } \mathord{\left/ {\vphantom {{G_{c} } {G_{f} }}} \right. \kern-0pt} {G_{f} }}} \right)\beta_{c}^{2} \sin (\alpha_{c} c)\cos (\alpha_{f} f) = 0 $$
(19)

with \( \alpha_{i}^{2} = \omega^{2} \rho_{i} /M_{i} \). The P-waves modulus in an isotropic material is given by \( M_{i} = C_{33i} = \frac{{E_{i} \left( {1 - \nu_{i} } \right)}}{{\left( {1 + \nu_{i} } \right)\left( {1 - 2\nu_{i} } \right)}} \).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massabò, R. (2018). Wave Propagation and Dynamic Correction Factors for Composite Structures. In: Gopalakrishnan, S., Rajapakse, Y. (eds) Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7170-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7170-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7169-0

  • Online ISBN: 978-981-10-7170-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics