Skip to main content

Stem Cells and Uterine Fibroids

  • Chapter
  • First Online:
Uterine Fibroids and Adenomyosis

Abstract

Although little is known on the origin of leiomyoma tumorigenesis, increasing evidence supports the hypothesis that leiomyomas arise from a stem cell population in the uterus. Recent articles on stem cells and their paracrine interactions with more specialized cell populations within leiomyomas may help to establish the missing link between the development of treatments designed to stop the growth of leiomyomas and therapies devised to eliminate them. Studies to identify leiomyoma stem or progenitor cell markers might offer new possibilities for understanding the origin of these tumors and perhaps aid the development of noninvasive treatments. Adult (or somatic) stem cells constitute a subset of cells residing in normal tissues. By undergoing asymmetric division, they retain their ability to self-renew while producing daughter cells that go on to differentiate and play a role in tissue regeneration and repair. The unique properties of the uterus to enlarge and remodel suggest the existence of uterine stem cell systems. Neoplastic stem cells or tumor-initiating cells, a subset of cells within a tumor, have the ability to reconstitute tumors. Leiomyomas appear to be monoclonal tumors derived from a single myocyte. Work in recent years has identified, isolated, and characterized putative stem or progenitor cells in the myometrium and in leiomyomas. Here, we review the current literature on leiomyoma stem and progenitor cells and provide a new paradigm for understanding their pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1):100–7.

    Article  PubMed  Google Scholar 

  2. Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94(4):435–8.

    Article  CAS  PubMed  Google Scholar 

  3. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14):1344–55.

    Article  CAS  PubMed  Google Scholar 

  4. Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308(5728):1589–92.

    Article  CAS  PubMed  Google Scholar 

  5. Parker WH. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil Steril. 2007;87(4):725–36.

    Article  PubMed  Google Scholar 

  6. Wallach EE, Vlahos NF. Uterine myomas: an overview of development, clinical features, and management. Obstet Gynecol. 2004;104(2):393–406.

    Article  PubMed  Google Scholar 

  7. Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22(4):571–88.

    Article  PubMed  Google Scholar 

  8. Stewart EA. Uterine fibroids. Lancet. 2001;357(9252):293–8.

    Article  CAS  PubMed  Google Scholar 

  9. Yamagata Y, Maekawa R, Asada H, Taketani T, Tamura I, Tamura H, et al. Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod. 2009;15(4):259–67.

    Article  CAS  PubMed  Google Scholar 

  10. Navarro A, Yin P, Monsivais D, Lin SM, Du P, Wei JJ, et al. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One. 2012;7(3):e33284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zavadil J, Ye H, Liu Z, Wu J, Lee P, Hernando E, et al. Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PLoS One. 2010;5(8):e12362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Georgieva B, Milev I, Minkov I, Dimitrova I, Bradford AP, Baev V. Characterization of the uterine leiomyoma microRNAome by deep sequencing. Genomics. 2012;99(5):275–81.

    Article  CAS  PubMed  Google Scholar 

  13. Wei LH, Torng PL, Hsiao SM, Jeng YM, Chen MW, Chen CA. Histone deacetylase 6 regulates estrogen receptor alpha in uterine leiomyoma. Reprod Sci. 2011;18(8):755–62.

    Article  CAS  PubMed  Google Scholar 

  14. Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89(6):1771–6.

    Article  CAS  PubMed  Google Scholar 

  15. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.

    Article  CAS  Google Scholar 

  16. Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5.

    Article  CAS  PubMed  Google Scholar 

  17. Markowski DN, Bartnitzke S, Loning T, Drieschner N, Helmke BM, Bullerdiek J. MED12 mutations in uterine fibroids—their relationship to cytogenetic subgroups. Int J Cancer. 2012;131(7):1528–36.

    Article  CAS  PubMed  Google Scholar 

  18. de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovee JV. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 2013;44(8):1597–604.

    Article  CAS  PubMed  Google Scholar 

  19. Rieker RJ, Agaimy A, Moskalev EA, Hebele S, Hein A, Mehlhorn G, et al. Mutation status of the mediator complex subunit 12 (MED12) in uterine leiomyomas and concurrent/metachronous multifocal peritoneal smooth muscle nodules (leiomyomatosis peritonealis disseminata). Pathology. 2013;45(4):388–92.

    Article  CAS  PubMed  Google Scholar 

  20. Je EM, Kim MR, Min KO, Yoo NJ, Lee SH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044–7.

    Article  CAS  PubMed  Google Scholar 

  21. Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, et al. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62(4):657–61.

    Article  PubMed  Google Scholar 

  22. McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7(3):e33251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ravegnini G, Marino-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, et al. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  24. Brosens I, Deprest J, Dal Cin P, Van den Berghe H. Clinical significance of cytogenetic abnormalities in uterine myomas. Fertil Steril. 1998;69(2):232–5.

    Article  CAS  PubMed  Google Scholar 

  25. Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  26. Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010;140(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  27. Maruyama T. Stem/progenitor cells and the regeneration potentials in the human uterus. Reprod Med Biol. 2010;9:9–16.

    Article  PubMed  Google Scholar 

  28. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.

    Article  CAS  PubMed  Google Scholar 

  29. Canevari RA, Pontes A, Rosa FE, Rainho CA, Rogatto SR. Independent clonal origin of multiple uterine leiomyomas that was determined by X chromosome inactivation and microsatellite analysis. Am J Obstet Gynecol. 2005;193(4):1395–403.

    Article  PubMed  Google Scholar 

  30. Zhang P, Zhang C, Hao J, Sung CJ, Quddus MR, Steinhoff MM, et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37(10):1350–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hodge JC, Park PJ, Dreyfuss JM, Assil-Kishawi I, Somasundaram P, Semere LG, et al. Identifying the molecular signature of the interstitial deletion 7q subgroup of uterine leiomyomata using a paired analysis. Genes Chromosomes Cancer. 2009;48(10):865–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Velagaleti GV, Tonk VS, Hakim NM, Wang X, Zhang H, Erickson-Johnson MR, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet. 2010;202(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  33. Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150(3692):67–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mas A, Cervello I, Gil-Sanchis C, Faus A, Ferro J, Pellicer A, et al. Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril. 2012;98(3):741–51.e6.

    Article  PubMed  Google Scholar 

  35. Ono M, Qiang W, Serna VA, Yin P, Coon JS V, Navarro A, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7(5):e36935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ono M, Yin P, Navarro A, Moravek MB, Coon JS V, Druschitz SA, et al. Paracrine activation of WNT/beta-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci U S A. 2013;110(42):17053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maruyama T, Miyazaki K, Masuda H, Ono M, Uchida H, Yoshimura Y. Review: human uterine stem/progenitor cells: implications for uterine physiology and pathology. Placenta. 2013;34(Suppl):S68–72.

    Article  CAS  PubMed  Google Scholar 

  38. Maruyama T, Ono M, Yoshimura Y. Somatic stem cells in the myometrium and in myomas. Semin Reprod Med. 2013;31(1):77–81.

    Article  PubMed  Google Scholar 

  39. Chang HL, Senaratne TN, Zhang L, Szotek PP, Stewart E, Dombkowski D, et al. Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci. 2010;17(2):158–67.

    Article  PubMed  Google Scholar 

  40. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell. 2011;8(2):136–47.

    Article  CAS  Google Scholar 

  41. Yin P, Ono M, Moravek MB, Coon JS V, Navarro A, Monsivais D, et al. Human uterine leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. J Clin Endocrinol Metab. 2015;100(4):E601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bulun SE, Moravek MB, Yin P, Ono M, Coon JS V, Dyson MT, et al. Uterine leiomyoma stem cells: linking progesterone to growth. Semin Reprod Med. 2015;33(5):357–65.

    Article  CAS  PubMed  Google Scholar 

  43. Mas A, Nair S, Laknaur A, Simon C, Diamond MP, Al-Hendy A. Stro-1/CD44 as putative human myometrial and fibroid stem cell markers. Fertil Steril. 2015;104(1):225–34.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mas A, Stone L, O'Connor PM, Yang Q, Kleven DT, Simon C, et al. Developmental exposure to endocrine disruptors expands murine myometrial stem cell compartment as a prerequisite to leiomyoma tumorigenesis. Stem Cells. 2016;35(3):666–78.

    Article  CAS  PubMed  Google Scholar 

  45. Ono M, Yin P, Navarro A, Moravek MB, Coon VJ, Druschitz SA, et al. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth. Fertil Steril. 2014;101(5):1441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ono M, Bulun SE, Maruyama T. Tissue-specific stem cells in the myometrium and tumor-initiating cells in leiomyoma. Biol Reprod. 2014;91(6):149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanwar PS, Lee HJ, Zhang L, Zukerberg LR, Taketo MM, Rueda BR, et al. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod. 2009;81(3):545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol. 2005;288(1):276–83.

    Article  CAS  PubMed  Google Scholar 

  49. Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, et al. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells. 2007;25(5):1317–25.

    Article  CAS  PubMed  Google Scholar 

  50. Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006–11.

    Article  CAS  PubMed  Google Scholar 

  51. Moravek MB, Yin P, Ono M, Coon JS V, Dyson MT, Navarro A, et al. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications. Hum Reprod Update. 2015;21(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  52. Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene. 2013;32(20):2555–64.

    Article  CAS  PubMed  Google Scholar 

  53. Qiang W, Liu Z, Serna VA, Druschitz SA, Liu Y, Espona-Fiedler M, et al. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology. 2014;155(3):663–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Ono M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ono, M., Maruyama, T., Fujiwara, H., Bulun, S.E. (2018). Stem Cells and Uterine Fibroids. In: Sugino, N. (eds) Uterine Fibroids and Adenomyosis. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7167-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7167-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7166-9

  • Online ISBN: 978-981-10-7167-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics