Skip to main content

Genetics and Genomics of Uterine Fibroids

  • Chapter
  • First Online:
Uterine Fibroids and Adenomyosis

Abstract

Uterine fibroids are benign smooth muscle tumors of monoclonal origin that arise from the uterus. African-American women have a higher risk of developing the disease than do Caucasian women, and a family history of uterine fibroids is a risk factor for their development. The relative risk for uterine fibroids is significantly higher in monozygotic twins than in dizygotic twins, suggesting a correlation of the disease susceptibility with the patient’s genetic background. Chromosomal abnormalities are observed in approximately 40% of cases, where nonrandom and tumor-specific chromosomal abnormalities caused by chromosomal rearrangements affect alterations in the driver genes of uterine fibroids, such as high-mobility group AT-hook 2 (HMGA2) overexpression. Hereditary leiomyomatosis and renal cell cancer are caused by biallelic inactivation of the fumarase hydratase (FH) gene. Alport syndrome associated with diffuse leiomyomatosis is caused by deletions of collagen type IV alpha 5 chain (COL4A5) and alpha 6 chain (COL4A6). Somatic alterations of these genes are also observed in non-syndromic uterine fibroids. Whole-genome sequencing (WGS) revealed that approximately 70% of uterine fibroids have somatic mutations of Mediator complex 12 (MED12), which is the most frequently observed driver gene alteration in these tumors. Through WGS, uterine fibroids have been categorized into at least four subgroups according to the types of driver gene alterations: MED12 mutation, HMGA2 overexpression, biallelic FH inactivation, and COL4A5 and COL4A6 deletions. Each alteration is mutually exclusive in the fibroid nodule. In addition, the role of microRNAs in the development of uterine fibroids is extensively examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review. BJOG. 2017;124(10):1501–12. https://doi.org/10.1111/1471-0528.14640.

    Article  PubMed  CAS  Google Scholar 

  2. Jacoby VL, Fujimoto VY, Giudice LC, Kuppermann M, Washington AE. Racial and ethnic disparities in benign gynecologic conditions and associated surgeries. Am J Obstet Gynecol. 2010;202:514–21. https://doi.org/10.1016/j.ajog.2010.02.039.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van Voorhis BJ, Romitti PA, Jones MP. Family history as a risk factor for development of uterine leiomyomas. Results of a pilot study. J Reprod Med. 2002;47:663–9.

    PubMed  Google Scholar 

  4. Hodge JC, Morton CC. Genetic heterogeneity among uterine leiomyomata: insights into malignant progression. Hum Mol Genet. 2007;16(1):R7–13. https://doi.org/10.1093/hmg/ddm043.

    Article  PubMed  CAS  Google Scholar 

  5. Vikhlyaeva EM, Khodzhaeva ZS, Fantschenko ND. Familial predisposition to uterine leiomyomas. Int J Gynaecol Obstet. 1995;51:127–31.

    Article  CAS  PubMed  Google Scholar 

  6. Luoto R, Kaprio J, Rutanen EM, Taipale P, Perola M, Koskenvuo M. Heritability and risk factors of uterine fibroids—the Finnish Twin Cohort study. Maturitas. 2000;37:15–26.

    Article  CAS  PubMed  Google Scholar 

  7. Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman’s reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab. 1998;83:1875–80. https://doi.org/10.1210/jcem.83.6.4890.

    Article  PubMed  CAS  Google Scholar 

  8. Hashimoto K, Azuma C, Kamiura S, Kimura T, Nobunaga T, Kanai T, et al. Clonal determination of uterine leiomyomas by analyzing differential inactivation of the X-chromosome-linked phosphoglycerokinase gene. Gynecol Obstet Investig. 1995;40:204–8.

    Article  CAS  Google Scholar 

  9. Cai YR, Diao XL, Wang SF, Zhang W, Zhang HT, Su Q. X-chromosomal inactivation analysis of uterine leiomyomas reveals a common clonal origin of different tumor nodules in some multiple leiomyomas. Int J Oncol. 2007;31:1379–89.

    PubMed  CAS  Google Scholar 

  10. Zhang P, Zhang C, Hao J, Sung CJ, Quddus MR, Steinhoff MM, et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37:1350–6. https://doi.org/10.1016/j.humpath.2006.05.005.

    Article  PubMed  CAS  Google Scholar 

  11. Mashal RD, Fejzo ML, Friedman AJ, Mitchner N, Nowak RA, Rein MS, et al. Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer. 1994;11:1–6.

    Article  CAS  PubMed  Google Scholar 

  12. Townsend DE, Sparkes RS, Baluda MC, McClelland G. Unicellular histogenesis of uterine leiomyomas as determined by electrophoresis by glucose-6-phosphate dehydrogenase. Am J Obstet Gynecol. 1970;107:1168–73.

    Article  CAS  PubMed  Google Scholar 

  13. Cha PC, Takahashi A, Hosono N, Low SK, Kamatani N, Kubo M, et al. A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat Genet. 2011;43:447–50. https://doi.org/10.1038/ng.805.

    Article  PubMed  CAS  Google Scholar 

  14. Eggert SL, Huyck KL, Somasundaram P, Kavalla R, Stewart EA, Lu AT, et al. Genome-wide linkage and association analyses implicate FASN in predisposition to uterine leiomyomata. Am J Hum Genet. 2012;91:621–8. https://doi.org/10.1016/j.ajhg.2012.08.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wise LA, Ruiz-Narvaez EA, Palmer JR, Cozier YC, Tandon A, Patterson N, et al. African ancestry and genetic risk for uterine leiomyomata. Am J Epidemiol. 2012;176:1159–68. https://doi.org/10.1093/aje/kws276.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hodge JC, Park PJ, Dreyfuss JM, Assil-Kishawi I, Somasundaram P, Semere LG, et al. Identifying the molecular signature of the interstitial deletion 7q subgroup of uterine leiomyomata using a paired analysis. Genes Chromosomes Cancer. 2009;48:865–85. https://doi.org/10.1002/gcc.20692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dal Cin P, Moerman P, Deprest J, Brosens I, Van den Berghe H. A new cytogenetic subgroup in uterine leiomyoma is characterized by a deletion of the long arm of chromosome 3. Genes Chromosomes Cancer. 1995;13:219–20.

    Article  CAS  PubMed  Google Scholar 

  18. Pandis N, Bardi G, Sfikas K, Panayotopoulos N, Tserkezoglou A, Fotiou S. Complex chromosome rearrangements involving 12q14 in two uterine leiomyomas. Cancer Genet Cytogenet. 1990;49:51–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hu J, Surti U. Subgroups of uterine leiomyomas based on cytogenetic analysis. Hum Pathol. 1991;22:1009–16.

    Article  CAS  PubMed  Google Scholar 

  20. Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369:43–53. https://doi.org/10.1056/NEJMoa1302736.

    Article  PubMed  CAS  Google Scholar 

  21. Mehine M, Makinen N, Heinonen HR, Aaltonen LA, Vahteristo P. Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil Steril. 2014;102:621–9. https://doi.org/10.1016/j.fertnstert.2014.06.050.

    Article  PubMed  CAS  Google Scholar 

  22. Hodge JC, Kim TM, Dreyfuss JM, Somasundaram P, Christacos NC, Rousselle M, et al. Expression profiling of uterine leiomyomata cytogenetic subgroups reveals distinct signatures in matched myometrium: transcriptional profilingof the t(12;14) and evidence in support of predisposing genetic heterogeneity. Hum Mol Genet. 2012;21:2312–29. https://doi.org/10.1093/hmg/dds051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Klemke M, Meyer A, Nezhad MH, Bartnitzke S, Drieschner N, Frantzen C, et al. Overexpression of HMGA2 in uterine leiomyomas points to its general role for the pathogenesis of the disease. Genes Chromosomes Cancer. 2009;48:171–8. https://doi.org/10.1002/gcc.20627.

    Article  PubMed  CAS  Google Scholar 

  24. Quade BJ, Weremowicz S, Neskey DM, Vanni R, Ladd C, Dal Cin P, et al. Fusion transcripts involving HMGA2 are not a common molecular mechanism in uterine leiomyomata with rearrangements in 12q15. Cancer Res. 2003;63:1351–8.

    PubMed  CAS  Google Scholar 

  25. Takahashi T, Nagai N, Oda H, Ohama K, Kamada N, Miyagawa K. Evidence for RAD51L1/HMGIC fusion in the pathogenesis of uterine leiomyoma. Genes Chromosomes Cancer. 2001;30:196–201.

    Article  CAS  PubMed  Google Scholar 

  26. Nezhad MH, Drieschner N, Helms S, Meyer A, Tadayyon M, Klemke M, et al. 6p21 rearrangements in uterine leiomyomas targeting HMGA1. Cancer Genet Cytogenet. 2010;203:247–52. https://doi.org/10.1016/j.cancergencyto.2010.08.005.

    Article  PubMed  CAS  Google Scholar 

  27. Kazmierczak B, Dal Cin P, Wanschura S, Borrmann L, Fusco A, Van den Berghe H, et al. HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosomes Cancer. 1998;23:279–85.

    Article  CAS  PubMed  Google Scholar 

  28. Sargent MS, Weremowicz S, Rein MS, Morton CC. Translocations in 7q22 define a critical region in uterine leiomyomata. Cancer Genet Cytogenet. 1994;77:65–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ozisik YY, Meloni AM, Surti U, Sandberg AA. Deletion 7q22 in uterine leiomyoma. A cytogenetic review. Cancer Genet Cytogenet. 1993;71:1–6.

    Article  CAS  PubMed  Google Scholar 

  30. Moore SD, Herrick SR, Ince TA, Kleinman MS, Dal Cin P, Morton CC, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res. 2004;64:5570–7. https://doi.org/10.1158/0008-5472.can-04-0050.

    Article  PubMed  CAS  Google Scholar 

  31. Lehtonen HJ. Hereditary leiomyomatosis and renal cell cancer: update on clinical and molecular characteristics. Familial Cancer. 2011;10:397–411. https://doi.org/10.1007/s10689-011-9428-z.

    Article  PubMed  Google Scholar 

  32. Pithukpakorn M, Toro JR. Hereditary leiomyomatosis and renal cell cancer. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews(R). Seattle, WA: University of Washington, Seattle; 1993–2017.

    Google Scholar 

  33. Kampjarvi K, Makinen N, Mehine M, Valipakka S, Uimari O, Pitkanen E, et al. MED12 mutations and FH inactivation are mutually exclusive in uterine leiomyomas. Br J Cancer. 2016;114:1405–11. https://doi.org/10.1038/bjc.2016.130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kashtan CE. Alport syndrome. An inherited disorder of renal, ocular, and cochlear basement membranes. Medicine. 1999;78:338–60.

    Article  CAS  PubMed  Google Scholar 

  35. Hertz JM. Alport syndrome. Molecular genetic aspects. Dan Med Bull. 2009;56:105–52.

    PubMed  Google Scholar 

  36. Makinen N, Kampjarvi K, Frizzell N, Butzow R, Vahteristo P. Characterization of MED12, HMGA2, and FH alterations reveals molecular variability in uterine smooth muscle tumors. Mol Cancer. 2017;16:101. https://doi.org/10.1186/s12943-017-0672-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mehine M, Kaasinen E, Heinonen HR, Makinen N, Kampjarvi K, Sarvilinna N, et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A. 2016;113:1315–20. https://doi.org/10.1073/pnas.1518752113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5. https://doi.org/10.1126/science.1208930.

    Article  PubMed  CAS  Google Scholar 

  39. McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7:e33251. https://doi.org/10.1371/journal.pone.0033251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Croce S, Chibon F. MED12 and uterine smooth muscle oncogenesis: state of the art and perspectives. Eur J Cancer. 2015;51:1603–10. https://doi.org/10.1016/j.ejca.2015.04.023.

    Article  PubMed  CAS  Google Scholar 

  41. Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol. 2015;16:155–66. https://doi.org/10.1038/nrm3951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Makinen N, Heinonen HR, Sjoberg J, Taipale J, Vahteristo P, Aaltonen LA. Mutation analysis of components of the Mediator kinase module in MED12 mutation-negative uterine leiomyomas. Br J Cancer. 2014;110(9):2246. https://doi.org/10.1038/bjc.2014.138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bertsch E, Qiang W, Zhang Q, Espona-Fiedler M, Druschitz S, Liu Y, et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27:1144–53. https://doi.org/10.1038/modpathol.2013.243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Halder SK, Laknaur A, Miller J, Layman LC, Diamond M, Al-Hendy A. Novel MED12 gene somatic mutations in women from the Southern United States with symptomatic uterine fibroids. Mol Gen Genomics. 2015;290:505–11. https://doi.org/10.1007/s00438-014-0938-x.

    Article  CAS  Google Scholar 

  45. Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, et al. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62:657–61. https://doi.org/10.1111/his.12039.

    Article  PubMed  Google Scholar 

  46. Schwetye KE, Pfeifer JD, Duncavage EJ. MED12 exon 2 mutations in uterine and extrauterine smooth muscle tumors. Hum Pathol. 2014;45:65–70. https://doi.org/10.1016/j.humpath.2013.08.005.

    Article  PubMed  CAS  Google Scholar 

  47. Perot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, et al. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7:e40015. https://doi.org/10.1371/journal.pone.0040015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovee JV. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 2013;44:1597–604. https://doi.org/10.1016/j.humpath.2013.01.006.

    Article  PubMed  CAS  Google Scholar 

  49. Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest. 2015;125:3280–4. https://doi.org/10.1172/jci81534.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK. Silencing Med12 gene reduces proliferation of human leiomyoma cells mediated via Wnt/beta-catenin Signaling pathway. Endocrinology. 2017;158:592–603. https://doi.org/10.1210/en.2016-1097.

    Article  PubMed  Google Scholar 

  51. Gross KL, Neskey DM, Manchanda N, Weremowicz S, Kleinman MS, Nowak RA, et al. HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes Chromosomes Cancer. 2003;38:68–79. https://doi.org/10.1002/gcc.10240.

    Article  PubMed  CAS  Google Scholar 

  52. Wei JJ, Chiriboga L, Mittal K. Expression profile of the tumorigenic factors associated with tumor size and sex steroid hormone status in uterine leiomyomata. Fertil Steril. 2005;84:474–84. https://doi.org/10.1016/j.fertnstert.2005.01.142.

    Article  PubMed  CAS  Google Scholar 

  53. Helmke BM, Markowski DN, Muller MH, Sommer A, Muller J, Moller C, et al. HMGA proteins regulate the expression of FGF2 in uterine fibroids. Mol Hum Reprod. 2011;17:135–42. https://doi.org/10.1093/molehr/gaq083.

    Article  PubMed  CAS  Google Scholar 

  54. Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46:336–47. https://doi.org/10.1002/gcc.20415.

    Article  PubMed  CAS  Google Scholar 

  55. Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res. 2008;6:663–73. https://doi.org/10.1158/1541-7786.mcr-07-0370.

    Article  PubMed  CAS  Google Scholar 

  56. Lehtonen R, Kiuru M, Vanharanta S, Sjoberg J, Aaltonen LM, Aittomaki K, et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol. 2004;164:17–22. https://doi.org/10.1016/s0002-9440(10)63091-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Miettinen M, Felisiak-Golabek A, Wasag B, Chmara M, Wang Z, Butzow R, et al. Fumarase-deficient uterine leiomyomas: an immunohistochemical, molecular genetic, and clinicopathologic study of 86 cases. Am J Surg Pathol. 2016;40:1661–9. https://doi.org/10.1097/pas.0000000000000703.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Harrison WJ, Andrici J, Maclean F, Madadi-Ghahan R, Farzin M, Sioson L, et al. Fumarate hydratase-deficient uterine leiomyomas occur in both the syndromic and sporadic settings. Am J Surg Pathol. 2016;40:599–607. https://doi.org/10.1097/pas.0000000000000573.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Garcia-Torres R, Cruz D, Orozco L, Heidet L, Gubler MC. Alport syndrome and diffuse leiomyomatosis. Clinical aspects, pathology, molecular biology and extracellular matrix studies. A synthesis. Nephrologie. 2000;21:9–12.

    PubMed  CAS  Google Scholar 

  60. Sado Y, Kagawa M, Naito I, Ueki Y, Seki T, Momota R, et al. Organization and expression of basement membrane collagen IV genes and their roles in human disorders. J Biochem. 1998;123:767–76.

    Article  CAS  PubMed  Google Scholar 

  61. Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89(6):1771. https://doi.org/10.1016/j.fertnstert.2007.05.074.

    Article  PubMed  CAS  Google Scholar 

  62. Marsh EE, Steinberg ML, Parker JB, Wu J, Chakravarti D, Bulun SE. Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production. Fertil Steril. 2016;106:766–72. https://doi.org/10.1016/j.fertnstert.2016.05.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Qiang W, Liu Z, Serna VA, Druschitz SA, Liu Y, Espona-Fiedler M, et al. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology. 2014;155:663–9. https://doi.org/10.1210/en.2013-1763.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chuang TD, Khorram O. Mechanisms underlying aberrant expression of miR-29c in uterine leiomyoma. Fertil Steril. 2016;105:236–45.e1. https://doi.org/10.1016/j.fertnstert.2015.09.020.

    Article  PubMed  CAS  Google Scholar 

  65. Fitzgerald JB, Chennathukuzhi V, Koohestani F, Nowak RA, Christenson LK. Role of microRNA-21 and programmed cell death 4 in the pathogenesis of human uterine leiomyomas. Fertil Steril. 2012;98:726–34.e2. https://doi.org/10.1016/j.fertnstert.2012.05.040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ling J, Wu X, Fu Z, Tan J, Xu Q. Systematic analysis of gene expression pattern in has-miR-197 over-expressed human uterine leiomyoma cells. Biomed Pharmacother. 2015;75:226–33. https://doi.org/10.1016/j.biopha.2015.07.039.

    Article  PubMed  CAS  Google Scholar 

  67. Chuang TD, Khorram O. miR-200c regulates IL8 expression by targeting IKBKB: a potential mediator of inflammation in leiomyoma pathogenesis. PLoS One. 2014;9:e95370. https://doi.org/10.1371/journal.pone.0095370.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guan Y, Guo L, Zukerberg L, Rueda BR, Styer AK. MicroRNA-15b regulates reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expression in human uterine leiomyoma. Reprod Biol Endocrinol. 2016;14:45. https://doi.org/10.1186/s12958-016-0180-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ishikawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, H., Shozu, M. (2018). Genetics and Genomics of Uterine Fibroids. In: Sugino, N. (eds) Uterine Fibroids and Adenomyosis. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7167-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7167-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7166-9

  • Online ISBN: 978-981-10-7167-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics