Skip to main content

Orientation-Dependent Response of Pure Zinc Grains Under Instrumented Indentation: Micromechanical Modeling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This chapter concerns the micromechanical behavior modeling of a pure zinc polycrystal. An inverse optimization strategy was developed to determine plastic deformation properties from instrumented indentation tests performed on individual grains of cold-rolled polycrystalline sheets. Nanoindentation tests have been performed on grains using a spherical–conical diamond indenter, providing load-penetration depth curves. The crystalline orientation of those grains has been determined using an EBSD analysis. Furthermore, a crystal plasticity model has been implemented in the finite element code Abaqus using a user material subroutine. To identify the constitutive model parameters, the inverse identification problem has been solved using the MOGA-II genetic algorithm coupled with a finite element analysis of the nanoindentation test. In a first approach, the identification procedure used the load-displacement curves issued from the indentation performed on a grain of given crystalline orientation. A good agreement is achieved between experimental and numerical results. This constitutive model has been validated by simulating the indentation response of grains of distinct crystalline orientations, involving different slip systems activity rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Galvanizers Association website. https://www.galvanizeit.org

  2. Takuda H, Yoshii T, Hatta N (1999) Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet. J Mater Process Technol 89–90:135–140

    Article  Google Scholar 

  3. Kuwabara T, Katami C, Kikuchi M, Shindo T, Ohwue T (2001) Cup drawing of pure titanium sheet-finite element analysis and experimental validation. In: Proceedings of the seventh international conference on numerical methods in industrial forming processes, Toyohashi, Japan, 18–20 June 2001, p 781

    Google Scholar 

  4. Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20:2027–2045

    Article  MATH  Google Scholar 

  5. Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194

    Article  MATH  Google Scholar 

  6. Plunkett B, Lebensohn RA, Cazacu O, Barlat F (2006) Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater 54:4159–4169

    Article  Google Scholar 

  7. Nixon ME, Cazacu O, Lebensohn RA (2010) Anisotropic response of high-purity-titanium: experimental characterization and constitutive modeling. Int J Plast 26:516–532

    Article  MATH  Google Scholar 

  8. Khan SK, Yu S, Liu H (2012) Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part II: A strain rate and temperature dependent anisotropic yield function. Int J Plast 38:14–26

    Article  Google Scholar 

  9. Yoon JH, Cazacu O, Mishra RK (2014) Constitutive modeling of AZ31 sheet alloy with application to axial crushing. Mater Sci Eng A 565:203–212

    Article  Google Scholar 

  10. Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31:1951–1976

    Article  Google Scholar 

  11. Taylor GI (1938) Plastic strains in metals. J Inst Metals 62:307–324

    Google Scholar 

  12. Yoo MH, Wei CT (1966) Application of anisotropic elasticity theory to the plastic deformation in hexagonal zinc. Phil Mag 13:759–775

    Article  Google Scholar 

  13. Yoo MH, Lee JK (1991) Deformation twinning in HCP metals and alloys. Phil Mag 63:987–1000

    Article  Google Scholar 

  14. Huang Y (1991) A user-material subroutine incorporating single crystal plasticity in the Abaqus finite element program. Mech report 178, Harvard University

    Google Scholar 

  15. Kysar JW, Hall P (1991) Addendum to “a user-material subroutine incorporating single crystal plasticity in the Abaqus finite element program, Y. Huang, Mech. Report 178, Harvard University

    Google Scholar 

  16. Nguyen LT (2014) Contribution à l’étude des mécanismes de plasticité dans les hexagonaux compacts lors de l’essai de nanoindentation: Application au Zinc. PhD thesis, University of Reims Champagne-Ardenne

    Google Scholar 

  17. Liu Y, Wang B, Yoshino M, Roy S, Lu H, Komanduri R (2005) Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J Mech Phys Solids 53:2718–2741

    Article  MATH  Google Scholar 

  18. Liu Y, Varghese S, Ma J, Yoshino M, Lu H, Komanduri R (2008) Orientation effects in nanoindentation of single crystal copper. Int J Plast 24:1990–2015

    Article  MATH  Google Scholar 

  19. Liu M, Lu C, Tieu AK (2015) Crystal plasticity finite element method modelling of indentation size effect. Int J Solids Struct 54:42–49

    Article  Google Scholar 

  20. Bhattacharya AK, Nix WD (1988) Finite element simulation of indentation experiments. Int J Solids Struct 24:881–891

    Article  Google Scholar 

  21. Tromans D (2011) Elastic anisotropy of HCP metal crystals and polycrystals. Int J Res Rev Appl Sci 6:462–483

    MathSciNet  Google Scholar 

  22. Philippe MJ, Serghat M, Houtte PV, Esling C (1994) Modelling of texture evolution for materials of hexagonal symmetry: I—Application to zinc alloys. Acta Metall Mater 42:239–250

    Article  Google Scholar 

  23. Fundenberger JJ, Philippe MJ, Wagner F, Esling C (1997) Modelling and prediction properties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys). Acta Mater 45:4041–4055

    Article  Google Scholar 

  24. Van TP, Jöchen K, Böhlke T (2012) Simulation of sheet metal forming incorporating EBSD data. J Mater Process Technol 212:2659–2668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abbès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, N.P.T., Abbès, F., Abbès, B., Li, Y. (2018). Orientation-Dependent Response of Pure Zinc Grains Under Instrumented Indentation: Micromechanical Modeling. In: Nguyen-Xuan, H., Phung-Van, P., Rabczuk, T. (eds) Proceedings of the International Conference on Advances in Computational Mechanics 2017. ACOME 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7149-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7149-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7148-5

  • Online ISBN: 978-981-10-7149-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics