Skip to main content

Microbial Management of Organic Waste in Agroecosystem

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 7))

Abstract

Organic waste materials occur universally as surplus agricultural waste, municipal solid waste, industrial waste and poultry waste. Microbial management of organic waste is a promising, environment-friendly approach to manage the large quantities of organic waste due to its recycling potential. Composting is a biotechnological process by which different microbial communities play a key role in biotransformation of complex organic substrates into useful decomposed residues. In this biological oxidative decomposition process, different types of diverse compost microbiota are involved. Due to the synergistic activities and functional diversity of microbiota, relatively low-cost, stable biomass, humus products are produced. Microbial compost materials are used as bioorganic manures to increase soil fertility that facilitates sustainable agriculture. In this chapter, we describe the history and science of composting, types of organic waste, microbial parameters, different types of composting, diversity and function of composting microbiota, mechanism of decomposition, microbiological methods for the analysis of compost maturity and socio-economic significance of microbial management of organic waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Jilani G, Arshad M, Zahir ZA, Khalid A (2007) Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann Microbiol 57(4):471–479

    Article  Google Scholar 

  • Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) An introduction to humic substances in soil, sediment, and water. In: Aiken GR et al (eds) Humic substances in soil, sediment and water: geochemistry, isolation and characterization. Wiley-lnterscience, New York, pp 1–9

    Google Scholar 

  • Alfreider A, Peters S, Tebbe CC et al (2002) Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util 10:303–312

    Article  Google Scholar 

  • Awasthi M, Wang M, Chen H et al (2017) Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduced greenhouse gases emissions during sewage sludge composting. Bioresour Technol 224:428–438

    Article  CAS  PubMed  Google Scholar 

  • Beffa T, Blanc M, Lyon PF et al (1996) Isolation of Thermus strains from hot composts (60 to 80 degrees C). Appl Environ Microbiol 62:1723–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beier S, Bertilsson S (2013) Bacterial chitin degradation—Mechanisms and ecophysiological strategies. Front Microbiol 4:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 100(22):5444–5453

    Article  CAS  PubMed  Google Scholar 

  • Bess V (1999) Evaluating microbiology of compost. Biocycle 40(5):62–64

    CAS  Google Scholar 

  • Bhawalkar US, Bhawalkar UV (1993) Vermiculture biotechnology. In: Thampan PK (ed) Organic in soil health and crop production. Peekay Tree Crops Development Foundation, Cochin, pp 69–85

    Google Scholar 

  • Bianchetti CM, Harmann CH, Takasuka TE (2013) Fusion of dioxygenase and lignin-binding domains in a novel secreted enzyme from cellulolytic Streptomyces sp. SirexAA-E. J Biol Chem 288:18574–18587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc M, Marilley L, Beffa T, Aragno M (1999) Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) analysis. FEMS Microbiol Ecol 28:141–149

    Article  CAS  Google Scholar 

  • Blanchette RA (1995) Degradation of lignocellulose complex in wood. Can J Bot 73:S999–S1010

    Article  CAS  Google Scholar 

  • Braber K (1995) Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenergy 9:365–376

    Article  CAS  Google Scholar 

  • Browne CA (1933) The spontaneous heating and ignition of hay and other agricultural products. Science 77:223–229

    Article  CAS  PubMed  Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Butler TA, Sikora LJ, Steinhilber PM (1999) Compost age and sample storage effects on compost stability/maturity indicators, U.S. Dept. of Agriculture, Agricultural Research Service. http://www.nal.usda.gov/ttic/tektran/data/000010/59/0000105929.html

  • Cabanas-Vargas DD, Stentiford EI (2006) Oxygen and CO2 profiles and methane formation during the maturation phase of composting. Compost Sci Util 14:86–89

    Article  CAS  Google Scholar 

  • Carlsbaek MS (2000) In Amlinger F. Composting in Europe: where do we go? Paper for the international forum on recycling, Madrid

    Google Scholar 

  • Chen Z, Jiang X (2014) Microbiological safety of chicken litter or chicken litter-based organic fertilizers: a review. Agriculture 4(1):1–29. https://doi.org/10.3390/agriculture4010001

    Article  Google Scholar 

  • Chen Y, Chefetz B, Hadar Y (1996) Formation and properties of humic substance originating from composts. In: The science of composting. Springer, Dordrecht, pp 382–393

    Chapter  Google Scholar 

  • Chen Y, Liu Y, Li Y et al (2017) Influence of biochar on heavy metals and microbial community during composting of river sediment with agricultural wastes. Bioresour Technol 243:347–355

    Article  PubMed  CAS  Google Scholar 

  • Colpa DI, Fraaije MW, Van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Copper RC, Golueke CG (1979) Survival of enteric bacteria and viruses in compost and its leachate. Compost Sci Land Util 20:29–35

    Google Scholar 

  • Cournoyer MS (1996) Sanitation and stabilization of slaughterhouse sludges through composting. In Proceedings of the Canadian meat research institute technology symposium, pp 1–7

    Google Scholar 

  • Courtney RG, Mullen GJ (2008) Soil quality and barley growth as influenced by the land application of two compost types. Bioresour Technol 99:2913–2918

    Article  CAS  PubMed  Google Scholar 

  • Crawford JH (1983) Composting of agricultural wastes – a review. Process Biochem 18:14–18

    Google Scholar 

  • CzekaÅ‚a W, MaliÅ„ska K, Cáceres R et al (2016) Co-composting of poultry manure mixtures amended with biochar–the effect of biochar on temperature and C-CO 2 emission. Bioresour Technol 200:921–927

    Article  PubMed  CAS  Google Scholar 

  • D’Hose T, Cougnon M, De Vliegher A et al (2012) Influence of farm compost on soil quality and crop yields. Arch Agron Soil Sci 58:S71–S75

    Article  Google Scholar 

  • D’Hose T, Cougnon M, De Vliegher A (2014) The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl Soil Ecol 75:189–198

    Article  Google Scholar 

  • D’Hose T, Ruysschaert G, Viaene N (2016) Farm compost amendment and non-inversion tillage improve soil quality without increasing the risk for N and P leaching. Agric Ecosyst Environ 225:126–139

    Article  CAS  Google Scholar 

  • Das K, Keener HM (1997) Moisture effect on compaction and permeability in composts. J Environ Eng 123(3):275–281

    Article  CAS  Google Scholar 

  • De Bertoldi M (1995) Composting food processing waste in the European economic community. Compost Sci Util 3(2):87–92

    Article  Google Scholar 

  • de bertoldi M (2013) The science of composting. Springer, Dordrecht, p 1452

    Google Scholar 

  • Dees PM, Ghiorse WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) (2007a) Compost science and technology – waste management series 8. Elsevier, Boston, p 357

    Google Scholar 

  • Diaz LF, Savage GM, Eggerth LL, Chiumenti A (2007b) Systems used in composting. In: Diaz LF et al (eds) Compost science and technology – waste management series 8. Elsevier, Boston, pp 67–87

    Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Org Waste Agric 5(3):185–194. https://doi.org/10.1007/s40093-016-0132-8

    Article  Google Scholar 

  • Dukare AS, Prasanna R, Chandra DS et al (2011) Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Prot 30(4):436–442

    Article  Google Scholar 

  • Edwards CA, Burrows I, Fletcher KE, Jones BA (1985) The use of earthworms for composting farm wastes. In: Crasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied Science, Oxford, pp 229–241

    Google Scholar 

  • Eicker A (1981) The occurrence and nature of sulphur crystals in phase I mushroom compost. Mushroom Sci 11:27–34

    CAS  Google Scholar 

  • Eliot Epstein (1996) The science of composting. CRC Press, USA, p 504

    Google Scholar 

  • Enticknap JJ, Nonogaki H, Place AR, Hill RT (2006) Microbial diversity associated with odor modification for production of fertilizers from chicken litter. Appl Environ Microbiol 72:4105–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin

    Book  Google Scholar 

  • Esse PC, Buerkert A, Hiernaux P, Assa A (2001) Decomposition of and nutrient release from ruminant manure on acid sandy soils in the Sahelian zone of Niger, West Africa. Agric Ecosyst Environ 83(1):55–63

    Article  Google Scholar 

  • Fernandes TAR, da Silveira WB, Lopes Passos FM, Domingues Zucchi T (2014) Laccases from actinobacteria—What we have and what to expect. Adv Microbiol 4:285–296

    Article  CAS  Google Scholar 

  • Finstein MS, Morris ML, Strom PF (1980) Microbial ecosystem responsible for anaerobic digestion and composting. J Water Poll Control Fed 52:2675–2685

    Google Scholar 

  • Finstein MS, Miller FC, MacGregor ST, Psarianos KM (1985) The Rutgers strategy for composting: process design and control. National Technical Information Service, Springfield

    Google Scholar 

  • Franke-Whittle IH, Klammer SH, Insam H (2005) Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J Microbiol Methods 62:37–56

    Article  CAS  PubMed  Google Scholar 

  • Franke-Whittle IH, Knapp BA, Fuchs J et al (2009) Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb Ecol 57:510–521

    Article  CAS  PubMed  Google Scholar 

  • Fustec E, Chauvet E, Gas G (1989) Lignin degradation and humus formation in alluvial soils and sediments. Appl Environ Microbiol 55(4):922–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38(5):311–400

    Article  CAS  Google Scholar 

  • Gao M, Liang F, Yu A et al (2010) Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere 78(5):614–619

    Article  CAS  PubMed  Google Scholar 

  • Gaur AC, Singh G (1995) Recycling of rural and urban wastes through conventional and vermicomposting. In: Tandon HLS (ed) Recycling of crop, animal, human and industrial wastes in agriculture. Fertiliser Development and Consultation Organisation, New Delhi, pp 31–49

    Google Scholar 

  • Golabi SM, Nourmohammadi F, Saadnia A (2003) Electrosynthesis of organic compounds.: Part II: electrooxidative amination of 1, 4-dihydroxybenzene using some aliphatic amines. J Electroanal Chem 548:41–47

    Article  CAS  Google Scholar 

  • Golueke CG (1973) Composting: a study of the process and its principles. Rodale Press, Emmaus

    Google Scholar 

  • Golueke CG (1992) Bacteriology of composting. BioCycle, USA

    Google Scholar 

  • Gonzalo DG, Colpa DI, Habib MHM, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  PubMed  CAS  Google Scholar 

  • Griffin DM (1985) A comparison of the roles of bacteria and fungi. In: Leadbetter ER, Poindexter JS (eds) Bacteria in nature. Plenum Publishing, London, pp 221–255

    Chapter  Google Scholar 

  • Hao X, Chang C, Larney FJ (2004) Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting. J Environ Qual 33(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Hassen A, Belguith K, Jedidi N et al (2001) Microbial characterization during composting of municipal solid waste. Bioresour Technol 80(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Haug RT (1993) The practical handbook of compost engineering. CRC Press, Boca Raton

    Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. Urban Dev Se Knowl Pap 15:1–98

    Google Scholar 

  • Hoornweg D, Bhada-Tata P, Kennedy C (2013) Environment: waste production must peak this century. Nature 502(7473):615

    Article  PubMed  Google Scholar 

  • Hultman J (2009) Microbial diversity in the municipal composting process and development of detection methods. Ph. D. thesis Vikki Graduate School in Bioscience. University of Helsinki, Finland

    Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1989) Solid-state carbon-13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci Soc Am J 53(6):1695–1701

    Article  CAS  Google Scholar 

  • Inbar Y, Chen Y, Hadar Y, Hoitink HAJ (1990) New approaches to compost maturity. BioCycle 31(12):64–69

    CAS  Google Scholar 

  • Insam, de Bertoldi M (2007) Microbiology of the composting process. In: Compost science and technology – waste management series, vol 8. Elsevier, Boston, pp 26–45

    Google Scholar 

  • Ishii K, Fukui M, Takii S (2000) Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 89(5):768–777

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen ST (1995) Aerobic decomposition of organic wastes 2. Value of compost as a fertilizer. Resour Conserv Recycl 13(1):57–71

    Article  Google Scholar 

  • Jambhekar HK (1992) Use of earthworms as a potential source to decompose organic waste. In: Proceedings of national seminar on organic farming. MPKV, Pune, India, pp 52–53

    Google Scholar 

  • Jeswani HK, Azapagic A (2016) Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Manag 50:346–363

    Article  CAS  PubMed  Google Scholar 

  • Kale RD, Bano K, Krishnamoorthy RV (1982) Potential of Perionyx excavatus for utilization of organic wastes. Pedobiologia 23:419–425

    Google Scholar 

  • Kavitha R, Subramanian P (2007) Bioactive compost-a value added compost with microbial inoculants and organic additives. J Appl Sci 7(17):2514–2518

    Article  CAS  Google Scholar 

  • Kawata K, Cramer WW, Burge WD (1977) Composting destroys pathogens in sewage solids. Water Sew Works 124:76–79

    Google Scholar 

  • Keener HM, Dick WA, Hoitink HA (2000) Composting and beneficial utilization of composted by-product materials. Soil Sci Soc Am Book Series 6:315–342

    Google Scholar 

  • Khan N, Clark I, Sánchez-Monedero MA et al (2014) Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresour Technol 168:245–251

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klammer S, Knap B, etal IH (2008) Bacterial community patterns and thermal analyses of composts of various origins. Waste Manag Res 26(2):173–187

    Article  PubMed  Google Scholar 

  • Kowalchuk GA, Naoumenko ZS, Derikx PJ et al (1999) Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in compost and composted material. Appl Environ Microbiol 65:396–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhad RC, Singh A, Tripathi KK et al (1997) Microorganisms as an alternative source of protein. Nutr Rev 55:65–75

    Article  CAS  PubMed  Google Scholar 

  • Kuhed RC, Sing A, Eriksson KL (2006) Microorganisms and enzymes involved in the degradation of plant fiber cell wall. Biotechnol Pulp Pap Ind 57:45–125

    Article  Google Scholar 

  • Lambertz C, Ece S, Fischer R, Commandeur U (2016) Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineering 7:145–154

    CAS  Google Scholar 

  • Larney FJ, Sullivan DM, Buckley K, Eghball B (2006) The role of composting in recycling manure nutrients. Can J Soil Sci 86(4):597–611

    Article  Google Scholar 

  • Leonard J’ and Ramer S. (1993). Physical properties of compost – what do we know and why should we care? proceedings of the 4th Annual Meeting of the Composting Council Canada. Ottawa

    Google Scholar 

  • Li R, Wang JJ, Zhang Z et al (2012) Nutrient transformations during composting of pig manure with bentonite. Bioresour Technol 121:362–368

    Article  CAS  PubMed  Google Scholar 

  • Lim SL, Lee LH, TY W (2016) Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Clean Prod 111:262–278

    Article  Google Scholar 

  • Lohri CR, Diener S, Zabaleta I et al (2017) Treatment technologies for urban solid biowaste to create value products: a review with focus on low-and middle-income settings. Rev Environ Sci Biotechnol 16:1–50

    Article  Google Scholar 

  • López-González JA, Suárez-Estrella F, Vargas-García MC et al (2015) Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour Technol 175:406–416

    Article  PubMed  CAS  Google Scholar 

  • López-Cano I, Roig A, Cayuela ML et al (2016) Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Manag 49:553–559

    Article  PubMed  CAS  Google Scholar 

  • Lulu B, Egger W, Neunhäuserer C et al (2001) Can community level physiological profiles be used for compost maturity testing? Compost Sci Util 9:6–18

    Article  Google Scholar 

  • Mari I, Ehaliotis C, Kotsou M et al (2005) Use of sulfur to control pH in composts derived from olive processing by-products. Compost Sci Util 13(4):281–287

    Article  Google Scholar 

  • Martnez-Blanco J, Lehmann A, Muñoz P et al (2014) Application challenges for the social LCA of fertilizers within life cycle sustainability assessment. J Clean Prod 69:34–48

    Article  Google Scholar 

  • Masai E, Katayama Y, Nishikawa S et al (1989) Detection and localization of a new enzyme catalyzing the beta-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Lett 249:348–352

    Article  CAS  PubMed  Google Scholar 

  • Mathur SP, Owen G, Dinel H, Schnitzer M (1993) Determination of compost biomaturity. I. Literature review. Biol Agric Hortic 10(2):65–85

    Article  Google Scholar 

  • Michel Jr FC, Pecchia JA, Rigot J, Keener HM (2004) Mass and nutrient losses during the composting of dairy manure amended with sawdust or straw. Compost Sci Util 12(4):323–334

    Article  Google Scholar 

  • Miller FC (1992) Composting as a process based on the control of ecologically selective factors. In: Meeting FB Jr (ed) Soil microbial ecology. Applications in Agricultural and Environmental Management. Marcel Dekker, Inc., New York, pp 515–544

    Google Scholar 

  • Miller FC (1993) Composting as a process based on the control of ecologically selective factors. Soil Microbiol Ecol 18:515–544

    Google Scholar 

  • Miller FC (1996) Composting as a process based on the control of ecologically selective factors. In: Metting FB Jr (ed) Soil microbial ecology. Dekker, New York, pp 515–544

    Google Scholar 

  • Millner PD, Marsh PB, Snowden RB, Parr JF (1977) Occurrence of Aspergillus fumigatus during composting of sludge. Appl Environ Microbiol 34:765–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moss LH, Epstein E, Logan T (2002) Comparing the characteristics, risks and benefits of soil amendments and fertilizers used in agriculture. Proc Water Environ Fed 2002(3):602–623

    Article  Google Scholar 

  • Murphy DV, Stockdale EA, Brookes PC, Goulding KW (2007) Impact of microorganisms on chemical transformations in soil. In: Soil biological fertility. Springer, Dordrecht, pp 37–59

    Google Scholar 

  • Ogram A (2000) Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biol Biochem 32:1499–1504

    Article  CAS  Google Scholar 

  • Onwosi CO, Igbokwe VC, Odimba JN et al (2017) Composting technology in waste stabilization: on the methods, challenges and future prospects. J Environ Manag 190:140–157

    Article  CAS  Google Scholar 

  • Ouédraogo E, Mando A, Zombré NP (2001) Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric Ecosyst Environ 84:259–266

    Article  Google Scholar 

  • Paradelo R, Moldes AB, Prieto B et al (2010) Can stability and maturity be evaluated in finished composts from different sources? Compost Sci Util 18(1):22–31

    Article  CAS  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polprasert C, Koottatep T (2017) Organic waste recycling: technology, management and sustainability, 4th edn. IWA Publishing, London

    Google Scholar 

  • Ranalli G, Bottura G, Taddei P et al (2001) Composting of solid and sludge residues from agricultural and food industries. Bioindicators of monitoring and compost maturity. J Environ Sci Health, Part A 36(4):415–436

    Article  CAS  Google Scholar 

  • Rashid GMM, Taylor CR, Liu Y et al (2015) Identification of manganese superoxide dismutase from Sphingobacterium sp: t2 as a novel bacterial enzyme for lignin oxidation. ACS Chem Biol 10:2286–2294

    Article  CAS  PubMed  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood. Wiley, Chichester

    Google Scholar 

  • Riffaldi R, Levi-Minzi R, Pera A, De Bertoldi M (1986) Evaluation of compost maturity by means of chemical and microbial analyses. Waste Manag Res 4(4):387–396

    Article  CAS  Google Scholar 

  • Ruttimann C, Vicuna R, Mozuch MD, Kirk TK (1991) Limited bacterial mineralization of fungal degradation intermediates from synthetic lignin. Appl Environ Microbiol 57:3652–3655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryckeboer J, Mergaert J, Coosemans J et al (2003a) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K et al (2003b) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53(4):349–410

    Google Scholar 

  • Rynk R, van de Kamp M, Willson GB et al (1992). On-farm composting handbook. Rynk, R. (Ed). Northeast engineering agricultural services, New York.

    Google Scholar 

  • Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4(11):654–666

    Article  CAS  PubMed  Google Scholar 

  • Schaub SM, Leonard JJ (1996) Composting: an alternative waste management option for food processing industries. Trends Food Sci Technol 7(8):263–268

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Ann Rev Plant Biol 61:263–289

    Google Scholar 

  • Sequi P (1996) The role of composting in sustainable agriculture. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Springer, Dordrecht

    Google Scholar 

  • Sequi P, Tittarelli F, Benedetti A (2000) The role of sludge in the reintegration of soil fertility. In: Langenkamp, M (ed) Workshop on problems around sludge. European Comission Research Centre, EUR 19657 EN

    Google Scholar 

  • Singh R, Eltis LD (2015) The multihued palette of dye-decolorizing peroxidases. Arch Biochem Biophys 574:56–65

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Ibrahim MH, Esa N, Iliyana MS (2010) Composting of waste from palm oil mill: a sustainable waste management practice. Rev Environ Sci Biotechnol 9(4):331–344. https://doi.org/10.1007/s11157-010-9199-2

    Article  CAS  Google Scholar 

  • Smith JF, Fermor TR, Zadražil F (1988) Pretreatment of lignocellulosics for edible fungi. In: Zadražil F, Reiniger P (eds) Treatment of lignocellulosics with white-rot fungi. Elsevier, Essex, pp 3–13

    Google Scholar 

  • Solano ML, Iriarte F, Ciria P, Negro MJ (2001) SE—Structure and environment: performance characteristics of three aeration systems in the composting of sheep manure and straw. J Agri Engi Res 79(3):317–329

    Article  Google Scholar 

  • Steger K, gren S¨, AM JA et al (2007) Development of compost maturity and actinobacteria populations during full-scale composting of organic household waste. J Appl Microbiol 103:487–498

    Article  CAS  PubMed  Google Scholar 

  • Strom PF (1985) Effect of temperature on bacterial diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM (2005) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99(4):816–828

    Article  CAS  PubMed  Google Scholar 

  • Tsai WT (2008) Management considerations and environmental benefit analysis for turning food garbage into agricultural resources. Bioresour Technol 99:5309–5316

    Article  CAS  PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • Vandecasteele B, Sinicco T, D'Hose T et al (2016) Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J Environ Manag 168:200–209

    Article  CAS  Google Scholar 

  • Varadachari C, Ghosh K (1984) On humus formation. Plant Soil 77(2–3):305–313

    Article  CAS  Google Scholar 

  • Vargas-Garcia MC, Suárez-Estrella F, Lopez MJ, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag 30(5):771–778

    Article  CAS  PubMed  Google Scholar 

  • Viaene J, Agneessens L, Capito C et al (2017) Co-ensiling, co-composting and anaerobic co-digestion of vegetable crop residues: product stability and effect on soil carbon and nitrogen dynamics. Sci Hortic 220:214–225

    Article  CAS  Google Scholar 

  • Vicuna R (1988) Bacterial degradation of lignin. Enzym Microb Technol 10:646–655

    Article  CAS  Google Scholar 

  • Wakchaure VN, Zhou J, Hoffmann S, List B (2010) Catalytic asymmetric reductive amination of α-Branched Ketones. Angew Chem 122(27):4716–4718

    Article  Google Scholar 

  • Waksman SA (1932) Principles of soil microbiology. Williams & Wilkins, Baltimore, p 619

    Google Scholar 

  • Wang X, Zhao Y, Wang H et al (2017) Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition. Waste Manag 61:150–156

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson K, Tee E, Tomkins R, Hepworth G, Premier R (2011) Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult Sci 90(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Iqbal M, Arshad M et al (2007) Effectiveness of IAA, GA3 and kinetin blended with recycled organic waste for improving growth and yield of wheat (Triticum aestivum L.) Pak J Bot 39(3):761–768

    Google Scholar 

  • Zhang J, Chen G, Sun H et al (2016) Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresour Technol 200:876–883

    Article  CAS  PubMed  Google Scholar 

  • Zino M, Lo Curto RB, Salvo F et al (1999) Lipid composition of Geotrichum candidum in single-cell protein grown in continuous submerged culture. Bioresour Technol 67:7–11

    Article  Google Scholar 

  • Zucconi F, De Bertoldi M (1987) Compost specifications for the production and characterization of compost from municipal solid waste. In: De Bertoldi M, Ferranti MP, L’Hermite MP, Zucconi F (eds) Compost: production, quality and use. Elsevier, London, pp 276–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patchaye, M., Sundarkrishnan, B., Tamilselvan, S., Sakthivel, N. (2018). Microbial Management of Organic Waste in Agroecosystem. In: Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-7146-1_3

Download citation

Publish with us

Policies and ethics