Probiotic Biosurfactants: A Potential Therapeutic Exercises in Biomedical Sciences

  • Priyanka Saha
  • Deepa Nath
  • Manabendra Dutta Choudhury
  • Anupam Das Talukdar
Chapter

Abstract

Biosurfactant is the exudates of microbial metabolism and also familiar as surface-active compounds. It has netted its rank in both industrial and environmental portion but in medical science, use of same is still in nascent stage. Important probiotics like lactic acid bacteria, Bacillus spp. make up the vital constituents of human microflora, possesses an enormous antimicrobial, antibiofilm, antitumor and anti-adhesive potential. Structural novelty and diverse properties make biosurfactant as probable candidates for beneficial applications today. To attain anticipated success under this approach it is vital to keep in mind that certain microbes must transport some antimicrobial and surface activity. Surface activity aids in potential association with cell membranes of different organisms. Evident from the published literature that microbial surfactants such as lipopeptide and glycolipid showed to inhibit the transmission of cancerous cells and following apoptosis by rapid cell rupture. In drug discovery, biosurfactants appear with a promising drug delivery mode. In general, biosurfactants have strong bactericidal and fungicidal properties. Anti-adhesiveness of biosurfactant against pathogenic candidates marks them helpful for curing many diseases and also as therapeutic candidates. Structural diversity, their mode of actions and future prospects in medical sciences are the points of discussions under this review.

Keywords

Biosurfactants Probiotic Biomedical Antimicrobial Lipopeptide Glycolipid 

References

  1. Augustin M, Majesté PM, Hippolyte MT (2014) Effect of manufacturing practices on the microbiological quality of fermented milk (Pendidam) of some localities of Ngaoundere (Cameroon). Int J Curr Microbiol App Sci 3(11):71–81Google Scholar
  2. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444CrossRefPubMedGoogle Scholar
  3. Biosurfactants synthesized by bacteria of the genus Lactobacillus (n.d.). Ann Microbiol 59(1):119–126Google Scholar
  4. Boris S, Barbés C (2000) Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect 2(5):543–546CrossRefPubMedGoogle Scholar
  5. Brzozowski B, Bednarski W, Golek P (2011) The adhesive capability of two Lactobacillus strains and physicochemical properties of their synthesized biosurfactants. Food Technol Biotechnol 49(2):177Google Scholar
  6. Busscher HJ, Van der Mei HC (1997) Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11(1):24–32CrossRefPubMedGoogle Scholar
  7. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7(3):262–266CrossRefPubMedGoogle Scholar
  8. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta (BBA)- Biomembr 1611(1):91–97CrossRefGoogle Scholar
  9. Ceresa C, Tessarolo F, Caola I, Nollo G, Cavallo M, Rinaldi M, Fracchia L (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 118(5):1116–1125CrossRefPubMedGoogle Scholar
  10. Cribby S, Taylor M, Reid G (2009) Vaginal microbiota and the use of probiotics. Interdisciplinary perspectives on infectious diseases 2008Google Scholar
  11. Davey Smith G, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22CrossRefGoogle Scholar
  12. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64PubMedPubMedCentralGoogle Scholar
  13. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1485(2):145–152CrossRefGoogle Scholar
  14. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193CrossRefPubMedPubMedCentralGoogle Scholar
  15. Falagas ME, Betsi GI, Athanasiou S (2006) Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother 58(2):266–272CrossRefPubMedGoogle Scholar
  16. Falagas ME, Betsi GI, Athanasiou S (2007) Probiotics for the treatment of women with bacterial vaginosis. Clin Microbiol Infect 13(7):657–664. 26 2 Biosurfactants of Probiotic Lactic Acid BacteriaCrossRefPubMedGoogle Scholar
  17. Falagas ME, Makris GC (2009) Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. J Hosp Infect 71(4):301–306CrossRefPubMedGoogle Scholar
  18. Fracchia L, Cavallo M, Allegrone G, Martinotti MG (2010) A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Appl Microbiol Biotechnol 2:827–837Google Scholar
  19. Gan BS, Kim J, Reid G, Cadieux P, Howard JC (2002) Lactobacillus fermentum RC-14 inhibits Staphylococcus aureus infection of surgical implants in rats. J Infect Dis 185(9):1369–1372CrossRefPubMedGoogle Scholar
  20. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113(1):1–15CrossRefPubMedGoogle Scholar
  21. Goŀek P, Bednarski W, Brzozowski B, Dziuba B (2009) The obtaining and properties ofGoogle Scholar
  22. Gomaa EZ (2013) Antimicrobial activity of a biosurfactant produced by Bacillus licheniformis strain M104 grown on whey. Braz Arch Biol Technol 56(2):259–268CrossRefGoogle Scholar
  23. Gudiña EJ, Rocha V, Teixeira JA, Rodrigues LR (2010a) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 50(4):419–424CrossRefPubMedGoogle Scholar
  24. Gudiña EJ, Teixeira JA, Rodrigues LR (2010b) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B: Biointerfaces 76(1):298–304CrossRefPubMedGoogle Scholar
  25. Gupta V, Garg R (2009) Probiotics. Indian J Med Microbiol 27(3):202CrossRefPubMedGoogle Scholar
  26. Heinemann C, van Hylckama Vlieg JE, Janssen DB, Busscher HJ, van der Mei HC, Reid G (2000) Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol Lett 190(1):177–180CrossRefPubMedGoogle Scholar
  27. Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29(4):813–835CrossRefPubMedGoogle Scholar
  28. Inès M, Dhouha G (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112CrossRefPubMedGoogle Scholar
  29. Kelecom A (2002) Secondary metabolites from marine microorganisms. An Acad Bras Ciências 74(1):151–170CrossRefGoogle Scholar
  30. Kermanshahi RK, Peymanfar S (2012) Isolation and identification of lactobacilli from cheese, yoghurt and silage by 16S rDNA gene and study of bacteriocin and biosurfactant production. Jundishapur J Microbiol 5(4):528–532CrossRefGoogle Scholar
  31. Madhu AN, Prapulla SG (2014) Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Appl Biochem Biotechnol 172(4):1777–1789CrossRefPubMedGoogle Scholar
  32. Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants. Biotechnol Lett 34(9):1597–1605CrossRefPubMedGoogle Scholar
  33. Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113(3):188–196CrossRefPubMedGoogle Scholar
  34. Meurman JH, Stamatova I (2007) Probiotics: contributions to oral health. Oral Dis 13(5):443–451CrossRefPubMedGoogle Scholar
  35. Meylheuc T, Methivier C, Renault M, Herry JM, Pradier CM, Bellon-Fontaine MN (2006) Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Colloids Surf B 52(2):128–137CrossRefGoogle Scholar
  36. Moldes AB, Paradelo R, Vecino X, Cruz JM, Gudiña E, Rodrigues L, Barral MT (2013) Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil. BioMed Res Int 961842:6 ppGoogle Scholar
  37. Murphy C, Carroll C, Jordan KN (2006) Environmental survival mechanisms of the food borne pathogen Campylobacter jejuni. J Appl Microbiol 100(4):623–632CrossRefPubMedGoogle Scholar
  38. Nerurkar NL, Baker BM, Sen S, Wible EE, Elliott DM, Mauck RL (2009) Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat Mater 8(12):986CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pascual LM, Daniele MB, Giordano W, Pájaro MC, Barberis IL (2008) Purification and partial characterization of novel bacteriocin L23 produced by Lactobacillus fermentum L23. Curr Microbiol 56(4):397–402CrossRefPubMedGoogle Scholar
  40. Portilla-Rivera O, Torrado A, Domínguez JM, Moldes AB (2008) Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. J Agric Food Chem 56(17):8074–8080CrossRefPubMedGoogle Scholar
  41. Reid G, Howard J, Gan BS (2001a) Can bacterial interference prevent infection? Trends Microbiol 9(9):424–428CrossRefPubMedGoogle Scholar
  42. Reid G, Zalai C, Gardiner G (2001b) Urogenital lactobacilli probiotics, reliability, and regulatory issues. J Dairy Sci 84:E164–E169CrossRefGoogle Scholar
  43. Rivera OMP, Moldes AB, Torrado AM, Domínguez JM (2007) Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochem 42(6):1010–1020CrossRefGoogle Scholar
  44. Rodrigues L, Van der Mei H, Teixeira JA, Oliveira R (2004) Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol 66(3):306–311CrossRefPubMedGoogle Scholar
  45. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618CrossRefPubMedGoogle Scholar
  46. Rodríguez N, Salgado JM, Cortés S, Domínguez JM (2010) Alternatives for biosurfactants and bacteriocins extraction from Lactococcus lactis cultures produced under different pH conditions. Lett Appl Microbiol 51(2):226–233PubMedGoogle Scholar
  47. Rodríguez-Pazo N, Salgado JM, Cortés-Diéguez S, Domínguez JM (2013a) Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation. Appl Biochem Biotechnol 169(7):2175–2188CrossRefPubMedGoogle Scholar
  48. Rodríguez-Pazo N, Vázquez-Araújo L, Pérez-Rodríguez N, Cortés-Diéguez S, Domínguez JM (2013b) Cell-free supernatants obtained from fermentation of cheese whey hydrolyzates and phenylpyruvic acid by Lactobacillus plantarum as a source of antimicrobial compounds, bacteriocins, and natural aromas. Appl Biochem Biotechnol 171(4):1042–1060CrossRefPubMedGoogle Scholar
  49. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30Google Scholar
  50. Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J 2011(1):1–14Google Scholar
  51. Salehi R, Savabi O, Kazemi M (2014) Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf) of Streptococcus mutans. Adv Biomed Res 3Google Scholar
  52. Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C (2014) Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol 14(1):1CrossRefGoogle Scholar
  53. Santos DK, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo LA (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Petrol Sci Eng 105:43–50CrossRefGoogle Scholar
  54. Saravanakumari P, Mani K (2010) Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol 101(22):8851–8854CrossRefPubMedGoogle Scholar
  55. Sauvageau J, Ryan J, Lagutin K, Sims IM, Stocker BL, Timmer MS (2012) Isolation and structural characterisation of the major glycolipids from Lactobacillus plantarum. Carbohydr Res 357:151–156CrossRefPubMedGoogle Scholar
  56. Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci World J 2014Google Scholar
  57. Sharma D, Saharan BS, Chauhan N, Procha S, Lal S (2015) Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springer Plus 4(1):1–14CrossRefGoogle Scholar
  58. Sihorkar V, Vyas SP (2001) Biofilm consortia on biomedical and biological surfaces: delivery and targeting strategies. Pharm Res 18(9):1247–1254CrossRefPubMedGoogle Scholar
  59. Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164(3):297–303CrossRefPubMedGoogle Scholar
  60. Tahmourespour A, Salehi R, Kermanshahi RK, Eslami G (2011) The anti-biofouling effect of Lactobacillus fermentum-derived biosurfactant against Streptococcus mutans. Biofouling 27(4):385–39228. 2 Biosurfactants of Probiotic Lactic Acid BacteriaCrossRefPubMedGoogle Scholar
  61. Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102(3):3366–3372CrossRefPubMedGoogle Scholar
  62. Toiviainen A (2015) Probiotics and oral health: in vitro and clinical studies. Annales Universitatis Turkuensis, Sarja–Ser. D, Medica-OdontologicaGoogle Scholar
  63. Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112(10):1082–1087CrossRefGoogle Scholar
  64. Van Hoogmoed CG, Dijkstra RJB, Van der Mei HC, Busscher HJ (2006) Influence of biosurfactant on interactive forces between mutans streptococci and enamel measured by atomic force microscopy. J Dent Res 85(1):54–58CrossRefPubMedGoogle Scholar
  65. Vandecandelaere I, Coenye T (2015) Microbial composition and antibiotic resistance of biofilms recovered from endotracheal tubes of mechanically ventilated patients. In: Biofilm-based healthcare-associated infections. Springer International Publishing, Cham, pp 137–155Google Scholar
  66. Vaughan EE, Heilig HG, Ben-Amor K, De Vos WM (2005) Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 29(3):477–490Google Scholar
  67. Vecino X, Devesa-Rey R, Cruz JM, Moldes AB (2013) Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation. J Environ Manag 128:655–660CrossRefGoogle Scholar
  68. Vecino X, Devesa-Rey R, Moldes AB, Cruz JM (2014) Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere 111:24–31CrossRefPubMedGoogle Scholar
  69. Velraeds MM, Van de Belt-Gritter B, Van der Mei HC, Reid G, Busscher HJ (1998) Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. J Med Microbiol 47(12):1081–1085CrossRefPubMedGoogle Scholar
  70. Vujic G, Knez AJ, Stefanovic VD, Vrbanovic VK (2013) Efficacy of orally applied probiotic capsules for bacterial vaginosis and other vaginal infections: a double-blind, randomized, placebo-controlled study. Eur J Obstetr Gynecol Reprod Biol 168(1):75–79CrossRefGoogle Scholar
  71. Walencka E, Różalska S, Sadowska B, Różalska B (2008) The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol 53(1):61–66CrossRefGoogle Scholar
  72. Wicke C, Halliday B, Allen D, Roche NS, Scheuenstuhl H, Spencer MM, Roberts AB, Hunt TK (2000) Effects of steroids and retinoids on wound healing. Arch Surg 135(11):1265–1270CrossRefPubMedGoogle Scholar
  73. Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46(1):39PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Priyanka Saha
    • 1
  • Deepa Nath
    • 2
  • Manabendra Dutta Choudhury
    • 1
  • Anupam Das Talukdar
    • 1
  1. 1.Department of Life Science & BioinformaticsAssam UniversitySilcharIndia
  2. 2.Department of Botany and BiotechnologyKarimganj CollegeKarimganjIndia

Personalised recommendations