Microbe-Based Metallic Nanoparticles Synthesis and Biomedical Applications: An Update

Chapter

Abstract

Nanotechnology, a fascinating and interesting field of science has attracted researchers to explore its various applications in medicine, biology, environment, electronics, medical devices, food and agriculture. The engineered metallic nanoparticles (NPs) exhibit unique physicochemical and biological properties owing to their small size, varying shapes and surface plasmon dynamics. Metallic NPs have gained exceptional importance and are continuously explored for new opportunities. NPs display superior chemical stability, conductivity, catalytic activity, and possess superior pharmacological properties such as antimicrobial, antioxidant, anti-inflammatory activities and many more. In general, NPs are conventionally synthesized by physical or chemical methods that employ expensive and hazardous chemicals. The health risks associated with these toxic NPs cannot be ignored and hence, not preferred for many biological applications. Therefore, research is progressing towards the development of an eco-friendly and reliable biological approaches of nanoparticle synthesis. In this regard, biosynthesis of NPs using either plants, phytocompounds or microbes is gaining more importance in recent times among researchers owing to their potential pharmacological benefits. Microbes, such as fungi, bacteria, yeasts, and viruses have intrinsic bulks to reduce silver metal through their metabolic pathways. Microbe-assisted NPs synthesis avoids elaborate cell culture maintenance and yields in diverse size range, and morphologies that imparts unique biological properties. However, various factors such as bioresources, biomolecules, pH, temperatures and exposure time plays a significant role in the biosynthesis of crystalline microbe-assisted NPs. In this chapter, a comprehensive information about the biosynthesis of NPs using microbes including bacteria, fungi, and yeast is described. In addition, a view on the mechanism of action and their potential pharmacological benefits are discussed.

Keywords

Biosynthesis Metallic nanoparticles Green synthesis Biomedicine Microbes 

References

  1. Abdeen S, Geo S, Praseetha PK, Dhanya RP (2014) Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5(2):155Google Scholar
  2. Abdehgah IB, Khodav A, Shamsazar A, Negahdary M, Jafarzadeh M, Rahimi G (2017) In vitro antifungal effects of biosynthesized silver nanoparticle by Candida albicans against Candida glabrata. Biomed Res 28(7):2870–2876Google Scholar
  3. Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM (2016) Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 42(3):301–312CrossRefGoogle Scholar
  4. Abirami M, Kannabiran K (2016) Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: mechanism and biological applications. Front Chem Sci Eng 10(4):542–551CrossRefGoogle Scholar
  5. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63(15):1231–1234CrossRefGoogle Scholar
  6. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109PubMedCrossRefGoogle Scholar
  7. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824. https://doi.org/10.1088/0957-4484/14/7/323 CrossRefGoogle Scholar
  8. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  9. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003c) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerf 28(4):313–318CrossRefGoogle Scholar
  10. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144PubMedPubMedCentralCrossRefGoogle Scholar
  11. Akhtar MS, Swamy MK, Umar A, Sahli A, Abdullah A (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotyra and assessment of their antioxidant and antibacterial activities. J Nanosci Nanotechnol 15:9818–9823PubMedCrossRefGoogle Scholar
  12. Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086PubMedCrossRefGoogle Scholar
  13. Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999PubMedPubMedCentralCrossRefGoogle Scholar
  14. Attia YA, Farag YE, Mohamed YM, Hussien AT, Youssef T (2016) Photo-extracellular synthesis of gold nanoparticles using Baker’s yeast and their anticancer evaluation against Ehrlich ascites carcinoma cells. New J Chem 40(11):9395–9402CrossRefGoogle Scholar
  15. Avendaño R, Chaves N, Fuentes P, Sánchez E, Jiménez JI, Chavarría M (2016) Production of selenium nanoparticles in Pseudomonas putida KT2440. Sci Rep 6:37155. https://doi.org/10.1038/srep37155 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Babitha S, Korrapati PS (2013) Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent. Mater Res Bull 48(11):4738–4742CrossRefGoogle Scholar
  17. Babu MMG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloid Surf B 74(1):191–195CrossRefGoogle Scholar
  18. Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9):764–766CrossRefGoogle Scholar
  19. Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139PubMedCrossRefGoogle Scholar
  20. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloid Surf B 70:142–146CrossRefGoogle Scholar
  21. Bajaj M, Schmidt S, Winter J (2012) Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microb Cell Fact 11:1–14CrossRefGoogle Scholar
  22. Balakumarana MD, Ramachandrana R, Balashanmugama P, Mukeshkumarb DJ, Kalaichelvana PT (2016) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20CrossRefGoogle Scholar
  23. Banu AN, Balasubramanian C (2015) Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae). Parasitol Res 114(11):4069–4079PubMedCrossRefGoogle Scholar
  24. Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedesaegypti (Diptera: Culicidae). Parasitol Res 113(1):311–316PubMedCrossRefGoogle Scholar
  25. Bao H, Hao N, Yang Y, Zhao D (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3(7):481–489CrossRefGoogle Scholar
  26. Baranska JA, Sadowski Z (2013) Bioleaching of uranium minerals and biosynthesis of UO2 nanoparticles. Physicochem Probl Miner Process 49(1):71–79Google Scholar
  27. Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4(6):407–412CrossRefGoogle Scholar
  28. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2(3):217–230PubMedCrossRefGoogle Scholar
  29. Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—its characterization and stability. Chem Eng Technol 32:1036–1041CrossRefGoogle Scholar
  30. Bharde A, Wani A, Shouche Y, Joy PA, Prasad BL, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127(26):9326–9327PubMedCrossRefGoogle Scholar
  31. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141Google Scholar
  32. Bhargava A, Jain N, Manju Barathi L, Akhtar MS, Yun Y, Panwar J (2013) Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. J Nanopart Res 15:337–348CrossRefGoogle Scholar
  33. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60(11):1289–1306PubMedCrossRefGoogle Scholar
  34. Bhosale RS, Hajare KY, Mulay B, Mujumdar S, Kothawade M (2015) Biosynthesis, characterization and study of antimicrobial effect of silver nanoparticles by Actinomycetes spp. Int J Curr Microbiol App Sci 2:144–151Google Scholar
  35. Binupriya AR, Sathishkumar M, Yun SI (2010) Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf B: Biointerfaces 79:531–534PubMedCrossRefGoogle Scholar
  36. Blackwell M (2011) The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98:426–438PubMedCrossRefGoogle Scholar
  37. Bose S, Hochella MF, Gorby YA, Kennedy DW, Mc Cready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976CrossRefGoogle Scholar
  38. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207PubMedCrossRefGoogle Scholar
  39. Burgos WD, McDonough JT, Senko JM, Zhang G, Dohnalkova AC, Kelly SD, Kemner KM (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochim Cosmochim Acta 72(20):4901–4915CrossRefGoogle Scholar
  40. Cabuil V (2004) Dekker encyclopedia of nanoscience and nanotechnology, chapter 119 magnetic nanoparticles: preparation and properties. Roldan Group PublicationsGoogle Scholar
  41. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83:42–48PubMedCrossRefGoogle Scholar
  42. Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nanoaggregates using Neurosporacrassa. J Microbiol Biotechnol 22:1000–1004PubMedCrossRefGoogle Scholar
  43. Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomycessp JAR1 and its antimicrobial activity. Sci Pharm 81(2):607–624PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chen YL, Tuan HY, Tien CW, Lo WH, Liang HC, Hu YC (2009) Augmentedbiosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog 25(5):1260–1266PubMedCrossRefGoogle Scholar
  45. Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A, Du J, Huang J, Zhang Q (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B Biointerfaces 117:199–205PubMedCrossRefGoogle Scholar
  46. Chen C, Wang P, Li L (2016) Applications of bacterial magnetic nanoparticles in nanobiotechnology. J Nanosci Nanotechnol 16(3):2164–2171PubMedCrossRefGoogle Scholar
  47. Chengzheng W, Jiazhi W, Shuangjiang C, Swamy MK, Sinniah UR, Akhtar MS, Umar A (2018) Biogenic synthesis, characterization and evaluation of silver nanoparticles from Aspergillus niger JX556221 against human colon cancer cell line HT-29. J Nanosci Nanotechnol 18(5):3673–3681. https://doi.org/10.1166/jnn.2018.15364 CrossRefPubMedGoogle Scholar
  48. Chuhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2319Google Scholar
  49. Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14PubMedPubMedCentralGoogle Scholar
  50. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  51. Darnall DW, Greene B, Henzel MJ, Hosea M, McPherson RA, Sneddon J, Alexander MD (1986) Selective recovery of gold and other metal ions from an algal biomass. Environ SciTechnol 20:206–208CrossRefGoogle Scholar
  52. Das S, Das A, Guha A (2008) Adsorption behavior of mercury on functionalized Aspergillus versicolor mycelia: atomic force microscopic study. Langmuir 25:360–366CrossRefGoogle Scholar
  53. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199PubMedCrossRefGoogle Scholar
  54. Das SK, Liang J, Schmidt M, Laffir F, Marsili E (2012) Biomineralization mechanism of gold by zygomycete fungi Rhizopous oryzae. ACS Nano 6:6165–6173PubMedCrossRefGoogle Scholar
  55. Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4(2):121–126PubMedCrossRefGoogle Scholar
  56. Debieux CM, Dridge EJ, Mueller CM, Splatt P, Paszkiewicz K, Knight I, Florance H, Love J, Titball RW, Lewis RJ, Richardson DJ (2011) A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci 108(33):13480–13485PubMedPubMedCentralCrossRefGoogle Scholar
  57. Deljou A, Goudarzi S (2016) Green extracellular synthesis of the silver nanoparticles using Thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran J Biotechnol 14(2):25–32PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Factories 9:52CrossRefGoogle Scholar
  59. Divya K, Kurian LC, Vijayan S, Jisha MS (2016) Green synthesis of silver nanoparticles by Escherichia coli: analysis of antibacterial activity. J Water Environ Nanotechnol 1(1):63–74. https://doi.org/10.7508/jwent.2016.01.008 Google Scholar
  60. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170CrossRefGoogle Scholar
  61. Durán N, Marcato PD, Alves OL, de Souza, GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol: https://doi.org/10.1186/1477-3155-3-8
  62. Elblbesy MAA, Madbouly AK, Hamdan TAA (2014) Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2(5):98–103Google Scholar
  63. El-Naggar NEA, Mohamedin A, Hamza SS, Sherief AD (2016) Extracellular biofabrication, characterization, and antimicrobial efficacy of silver nanoparticles loaded on cotton fabrics using newly isolated Streptomyces sp. SSHH-1E. J Nanomater 2016:17. https://doi.org/10.1155/2016/3257359 CrossRefGoogle Scholar
  64. El-Shanshoury AERR, Elsilk SE, Ateya PS, Ebeid EM (2012) Synthesis of lead nanoparticles by Enterobacter sp. and avirulent Bacillus anthracis PS2010. Ann Microbiol 62(4):1803–1810CrossRefGoogle Scholar
  65. Ersoy H, Rybicki FJ (2007) Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 26(5):1190–1197PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fakhrullin RF, Zamaleeva AI, Morozov MV, Tazetdinova DI, Alimova FK, Hilmutdinov AK, Zhdanov RI, Kahraman M, Culha M (2009) Living fungi cells encapsulated in polyelectrolyte shells doped with metal nanoparticles. Langmuir 25(8):4628–4634PubMedCrossRefGoogle Scholar
  67. Fakhrullin RF, García-Alonso J, Paunov VN (2010) A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter 6(2):391–397CrossRefGoogle Scholar
  68. Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf B Biointerfaces 75:175–178PubMedCrossRefGoogle Scholar
  69. Feng Y, Yu Y, Wang Y, Lin X (2007) Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. CurrMicrobiol 55:402–408Google Scholar
  70. Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M (2016) Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB Microb Cell Fact 15(1):109PubMedCrossRefGoogle Scholar
  71. Fouad H, Hongjie L, Yanmei D, Baoting Y, El-Shakh A, Abbas G, Jianchu M (2016) Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilisto control filarial vector Culexpipiens pallens and its antimicrobial activity. Artif Cells Nanomedicine Biotechnol 1–10Google Scholar
  72. Gallardo C, Monrás JP, Plaza DO, Collao B, Saona LA, Venegas FA, Soto C, Ulloa G, Vásquez CC, Bravo D (2014) Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J Biotechnol 87:108–115CrossRefGoogle Scholar
  73. Gharieb M, Wilkinson S, Gadd G (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14:300–311CrossRefGoogle Scholar
  74. Gong J, Zhang Z, Bai H, Yang G (2007) Microbiological synthesis of nanophase PbS by Desulfotomaculum sp. Sci China Ser E Technolo Sci 50(3):302–307CrossRefGoogle Scholar
  75. Gorobets SV, Gorobets OY, Demianenko IV (2011) Self-organization of magnetic nanoparticles when giving magnetic properties to yeast Saccharomyces cerevisiae. Res Bull NTUU KPI 3:27–33Google Scholar
  76. Gorobets SV, Gorobets OY, Demianenko IV, Nikolaenko RN (2013) Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae yeasts with magnetic properties. J Magn Magn Mater 337–338:53–57CrossRefGoogle Scholar
  77. Gregorio SD, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonassp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241PubMedCrossRefGoogle Scholar
  78. Guo L, Huang J, Zhang X, Li Y, Zheng L (2008) Bacterial magnetic nanoparticles as drug carriers. J Mater Chem 18(48):5993–5997CrossRefGoogle Scholar
  79. Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Anton Leeuw 103:1113–1123CrossRefGoogle Scholar
  80. Gupta A, Silver S (1998) Silver as a biocide: will resistance become a problem? Nat Biotechnol 16:888PubMedCrossRefGoogle Scholar
  81. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Deepak V, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloid Surf B 9:328–335CrossRefGoogle Scholar
  82. Hanzlik M, Winklhofer M, Petersen N (1996) Spatial arrangement of chains of magnetosomes in magnetotactic bacteria. Earth Planet Sci Lett 145(1–4):125–134CrossRefGoogle Scholar
  83. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987CrossRefGoogle Scholar
  84. Hennebel T, Van Nevel S, Verschuere S, De Corte S, De Gusseme B, Cuvelier C, Fitts JP, Van der Lelie D, Boon N, Verstraete W (2011) Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 91(5):1435–1445PubMedCrossRefGoogle Scholar
  85. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive-X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147PubMedCrossRefGoogle Scholar
  86. Hosseini-Abari A, Emtiazi G, Lee SH, Kim BG, Kim JH (2014) Biosynthesis of silver nanoparticles by Bacillus stratosphericus spores and the role of dipicolinic acid in this process. Appl Biochem Biotechnol 174(1):270–282PubMedCrossRefGoogle Scholar
  87. Huang CP, Juang CP, Morehart K, Allen L (1990) The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res 24:433–439CrossRefGoogle Scholar
  88. Husain S, Sardar M, Fatma T (2015) Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 31(8):1279–1283PubMedCrossRefGoogle Scholar
  89. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006PubMedCrossRefGoogle Scholar
  90. Ingle A, Gade A, Pierra S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  91. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385PubMedPubMedCentralGoogle Scholar
  92. Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim SK, Iyappan M, Siva C (2013) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 107:82–89PubMedCrossRefGoogle Scholar
  93. Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloid Surf B 75(1):330–334CrossRefGoogle Scholar
  94. Jha AK, Prasad K, Kulkarni AR (2009a) Synthesis of TiO2 nanoparticles using microorganisms. Colloid Surf B 71(2):226–229CrossRefGoogle Scholar
  95. Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306CrossRefGoogle Scholar
  96. Jiang S, Kim MG, Kim SJ, Jung HS, Lee SW, Sadowsky MJ, Hur HG (2011) Bacterial formation of extracellular U (VI) nanowires. Chem Commun 47(28):8076–8078CrossRefGoogle Scholar
  97. Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65(6):1014–1017CrossRefGoogle Scholar
  98. Juzenas P, Chen W, Sun YP, Coelho MAN, Genralov R, Genralova N, Christensen L (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60:1600–1614PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surf B 65(1):150–153CrossRefGoogle Scholar
  100. Kalishwaralal K, Deepak V, Ramakumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413CrossRefGoogle Scholar
  101. Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 100:5356–5358PubMedCrossRefGoogle Scholar
  102. Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem Int Ed 47(28):5186–5189CrossRefGoogle Scholar
  103. Kannan N, Selvaraj S, Murty RV (2010) Microbial production of silver nanoparticles. Dig J Nanomater Bios 5(1):135–140Google Scholar
  104. Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metal using the fungus Aspergillus niger. Bioresour Technol 70:95–104CrossRefGoogle Scholar
  105. Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):e84693PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6(3):39–140CrossRefGoogle Scholar
  107. Khan MM, Kalathil S, Han TH, Lee J, Cho MH (2013) Positively charged gold nanoparticles synthesized by electrochemically active biofilm-a biogenic approach. Nanosci Nanotechnol 13:6079–6085CrossRefGoogle Scholar
  108. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011
  109. Khandel P, Shahi SK (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct 6(1):1–24Google Scholar
  110. Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial Biotechnol 8(6):904–917CrossRefGoogle Scholar
  111. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614PubMedPubMedCentralCrossRefGoogle Scholar
  112. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20PubMedCrossRefGoogle Scholar
  113. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S (2004) Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans Mater Res Soc Jpn 29:2341–2343Google Scholar
  114. Kora AJ, Rastogi L (2016) Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J Environ Manag 181:231–236CrossRefGoogle Scholar
  115. Korbekandi H, Mohseni S, MardaniJouneghani R, Pourhossein M, Iravani S (2016) Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 44(1):235–239PubMedCrossRefGoogle Scholar
  116. Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, Klimov XVI, Rogach AL, Reiss P, Milliron DJ, Guyot-Sionnnest P, Konstantatos G, Parak WJ, Hyeon T, Korgel BA, Murray CB, Heiss W (2015) Prospects of nanoscience with nanocrystals. ACS Nano 2:1012–1057CrossRefGoogle Scholar
  117. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95CrossRefGoogle Scholar
  118. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588PubMedCrossRefGoogle Scholar
  119. Kowshik M, Arhtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  120. Kuber C, Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloid Surf B 47:160–164CrossRefGoogle Scholar
  121. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  122. Kumar U, Shete A, Harle AS, Kasyutich O, Schwarzacher W, Pundle A, Poddar P (2008) Extracellular bacterial synthesis of protein-functionalized ferromagnetic Co3O4nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ions. Chem Mater 20(4):1484–1491CrossRefGoogle Scholar
  123. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747PubMedCrossRefGoogle Scholar
  124. Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler CS, Vallini G (2014) Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Factories 13(1):35CrossRefGoogle Scholar
  125. Lang C, Schuler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Matter 18:S2815–S2828CrossRefGoogle Scholar
  126. Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)− thiosulfate and gold (III)− chloride complexes. Langmuir 22(6):2780–2787PubMedCrossRefGoogle Scholar
  127. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)− chloride complex. Environ Sci Technol 40(20):6304–6309PubMedCrossRefGoogle Scholar
  128. Lengke MF, Fleet ME, Southam G (2006c) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV)− chloride complex. Langmuir 22(17):7318–7323PubMedCrossRefGoogle Scholar
  129. Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132PubMedPubMedCentralCrossRefGoogle Scholar
  130. Li X, Chen S, Hu W, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr Polym 76(4):509–512CrossRefGoogle Scholar
  131. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:16. https://doi.org/10.1155/2011/270974 Google Scholar
  132. Li Y, Li Y, Li Q, Fan X, Gao J, Luo Y (2016a) Rapid biosynthesis of gold nanoparticles by the extracellular secretion of Bacillus niabensis 45: characterization and antibiofilm activity. J Chem 2016:7. https://doi.org/10.1155/2016/2781347 Google Scholar
  133. Li J, Li Q, Ma X, Tian B, Li T, Yu J, Hua Y (2016b) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomed 11:–5931Google Scholar
  134. Liu T, Liu B, Zhang H, Wang Y (2005) The fluorescence bioassay platforms on quantum dots nanoparticles. J Fluoresc 15:729–733PubMedCrossRefGoogle Scholar
  135. Lloyd JR, Lovley DR (2000) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253CrossRefGoogle Scholar
  136. Magdi HM, Mourad MHE, Abd El Aziz MM (2014) Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt J Exp Biol (Bot) 10(1):1–12Google Scholar
  137. Mageswari A, Subramanian P, Ravindran V, Yesodharan S, Bagavan A, Rahuman AA, Karthikeyan S, Gothandam KM (2015) Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii. Environ Sci Pollut Res 22(7):5383–5394CrossRefGoogle Scholar
  138. Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiellapneumoniae. J NanostructChem 3:30. https://doi.org/10.1186/2193-8865-3-30 Google Scholar
  139. Maliszewska I (2011) Microbial synthesis of metal nanoparticles. In: Mahendra R, Nelson D (eds) Metal nanoparticlesin microbiology. Springer, Berlin, pp 153–176CrossRefGoogle Scholar
  140. Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagneticgreigite (Fe3O4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–260CrossRefGoogle Scholar
  141. Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner KM, McLean JS, Reed SB (2006) c-type cytochrome-dependent formation of U (IV) nanoparticles by Shewanellaoneidensis. PLoS Biol 4(8):e268PubMedPubMedCentralCrossRefGoogle Scholar
  142. Merzlyak A, Lee SW (2006) Phage as template for hybrid materials and mediators for nanomaterials synthesis. Curr Opin Chem Biol 10:246–252PubMedCrossRefGoogle Scholar
  143. Mi C, Wang Y, Zhang J, Huang H, Xu L, Wang S, Fang X, Fang J, Mao C, Xu S (2011) Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol 153(3):125–132PubMedPubMedCentralCrossRefGoogle Scholar
  144. Mishra A, Tripathy S, Wahab R, Jeong SH, Hwang I, Yang YB et al (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630PubMedCrossRefGoogle Scholar
  145. Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242PubMedCrossRefGoogle Scholar
  146. Moghaddam AB, Namvar F, Moniri M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565CrossRefGoogle Scholar
  147. Mohamedin A, El-Naggar NEA, Shawqi Hamza S, Sherief AA (2015) Green synthesis, characterization and antimicrobial activities of silver nanoparticles by Streptomyces viridodiastaticus SSHH-1 as a living nanofactory: statistical optimization of process variables. Curr Nanosci 11(5):640–654CrossRefGoogle Scholar
  148. Morcos SK (2007) Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? Br J Radiol 80(950):73–76PubMedCrossRefGoogle Scholar
  149. Mouxing FU, Qingbiao LI, Daohua SUN, Yinghua LU, Ning HE, Xu D, Wang H, Huang J (2006) Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 14:114–117CrossRefGoogle Scholar
  150. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  151. Musarrat J, Dwivedi S, Singh BR, Saquib Q, Al Khedhairy AA (2011a) Microbially synthesized nanoparticles: scope and applications. Agri Env App. https://doi.org/10.1007/978-1-4419-7931-5-5
  152. Musarrat J, Dwivedi S, Singh BR, Saquib Q, Al-Khedhairy AA (2011b) Microbially synthesized nanoparticles: scope and applications. In: Microbes and microbial technology. Springer, New York, pp 101–126Google Scholar
  153. Nadaf NY, Kanase SS (2016) Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.09.02
  154. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesisand patterning of silver nanoparticles. Nat Mater 1:169–172PubMedCrossRefGoogle Scholar
  155. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298. https://doi.org/10.1021/cg0255164 CrossRefGoogle Scholar
  156. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456PubMedCrossRefGoogle Scholar
  157. Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR (2009) A novel bacterial isolate Stenotrophomonasmaltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact 8(1):39PubMedPubMedCentralCrossRefGoogle Scholar
  158. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1):1–13CrossRefGoogle Scholar
  159. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellularsynthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9:1415–1422PubMedCrossRefGoogle Scholar
  160. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119CrossRefGoogle Scholar
  161. Paulkumar K, Rajeshkumar S, Gnanajobitha G, Vanaja M, Malarkodi C, Annadurai G (2013) Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. ISRN Nanomater 2013:8. https://doi.org/10.1155/2013/317963 CrossRefGoogle Scholar
  162. Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Iañez-Pareja E (2010) Magnetite biomineralization induced by Shewanellaoneidensis. Geochimica Cosmochim Acta 74(3):967–979CrossRefGoogle Scholar
  163. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A Mol Biomol Spectrosc 73:374–381CrossRefGoogle Scholar
  164. Plaza DO, Gallardo C, Straub YD, Bravo D, Pérez-Donoso JM (2016) Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb Cell Factories 15:76CrossRefGoogle Scholar
  165. Posfai M, Moskowitz BM, Arato B et al (2006) Properties of intracellular magnetite crystals produced by Desulfovibriomagneticus strain RS – 1. Earth Planet Sci Lett 249(3–4):444–455CrossRefGoogle Scholar
  166. Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1:129–135Google Scholar
  167. Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342(1):68–72PubMedCrossRefGoogle Scholar
  168. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250PubMedCentralCrossRefGoogle Scholar
  169. Priyadarshini S, Gopinath V, Priyadharsshini NM, Mubarak Ali D, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloid Surf B 102:232–237CrossRefGoogle Scholar
  170. Rajakumar G, Rahuman A, Roopan SM, Khanna VG, Elango G, Kamaraj C, Zahir AA, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29PubMedCrossRefGoogle Scholar
  171. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6(4):74PubMedCentralCrossRefGoogle Scholar
  172. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489PubMedCrossRefGoogle Scholar
  173. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21(7):836CrossRefGoogle Scholar
  174. Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloid Surf B 81:358–362CrossRefGoogle Scholar
  175. Sadowski Z, Maliszewskaih B, Grochowalska I, Polowczyk T, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mat Sci-Poland 26(2):419–424Google Scholar
  176. Safarik I, Maderova Z, Pospiskova K, Baldikova E, Horska K, Safarikova M (2015) Magnetically responsive yeast cells: methods of preparation and applications. Yeast 32(1):227–237PubMedGoogle Scholar
  177. Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70Google Scholar
  178. Salvadori MR, Ando RA, do Nascimento CA, Corrêa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9(1):e87968PubMedPubMedCentralCrossRefGoogle Scholar
  179. Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155(3):886–891CrossRefGoogle Scholar
  180. Sanjenbam P, Gopal JV, Kannabiran K (2014) Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. J Mycol Med 24(3):211–219PubMedCrossRefGoogle Scholar
  181. Sarangadharan S, Nallusamy S (2015) Biosynthesis and characterization of silver nanoparticles produced by Bacillus licheniformis. Int J Pharma Med Biol Sci 4(4):236Google Scholar
  182. Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloid Surf B 88(1):325–331CrossRefGoogle Scholar
  183. Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6:599–602CrossRefGoogle Scholar
  184. Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35:637–643PubMedCrossRefGoogle Scholar
  185. Sastry M, Ahmad A, Islam Khan M, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  186. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/9/3/035012
  187. Schuler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473PubMedCrossRefGoogle Scholar
  188. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308PubMedPubMedCentralCrossRefGoogle Scholar
  189. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007a) Rapidsynthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923CrossRefGoogle Scholar
  190. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007b) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171. https://doi.org/10.1016/j.nano.2007.02.001 PubMedCrossRefGoogle Scholar
  191. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  192. Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66(7):3083–3087PubMedPubMedCentralCrossRefGoogle Scholar
  193. Sharma N, Pinnaka AK, Raje M, Ashish FN, Bhattacharyya MS, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11(1):86CrossRefGoogle Scholar
  194. Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807CrossRefGoogle Scholar
  195. Singh PK, Kundu S (2014) Biosynthesis of gold nanoparticles using bacteria. Proc Natl Acad Sci India Sect B Biol Sci 84(2):331–336CrossRefGoogle Scholar
  196. Singh S, Bhatta UM, Satyam PV, Dhawan A, Sastry M, Prasad BLV (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem 18(22):2601–2606CrossRefGoogle Scholar
  197. Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6(4):365–369CrossRefGoogle Scholar
  198. Singh S, Vidyarthi AS, Nigam VK, Dev A (2014) Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis. Artif Cells Nanomed Biotechnol 42(1):6–12PubMedCrossRefGoogle Scholar
  199. Składanowski M, Wypij M, Laskowski D, Golińska P, Dahm H, Rai M (2016) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci 28:59–79. https://doi.org/10.1007/s10876-016-1043-6 CrossRefGoogle Scholar
  200. Smith PR, Holmes JD, Richardson DJ, Russell DA, Sodeau JR (1998) Photophysical and photochemical characterization of bacterial semiconductor cadmium sulfideparticles. J Chem Soc Faraday Trans 94:1235–1241CrossRefGoogle Scholar
  201. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivomolecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng Journal 162:989–996CrossRefGoogle Scholar
  203. Sonker AS, Richa JP, Rajneesh VK (2017) Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Can J Biotech 1(1):26–37CrossRefGoogle Scholar
  204. Srinath BS, Rai VR (2015) Biosynthesis of highly monodispersed, spherical gold nanoparticles of size 4–10 nm from spent cultures of Klebsiella pneumoniae. 3Biotech 5(5):671–676Google Scholar
  205. Srivastava P, Braganca JM, Kowshik M (2014) In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol Prog 30:1480–1487PubMedCrossRefGoogle Scholar
  206. Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152PubMedCrossRefGoogle Scholar
  207. Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S (2015a) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5(1):73–81. https://doi.org/10.1007/s13204-014-0293-6 CrossRefGoogle Scholar
  208. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015b) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spec Acta Part A Mol Biomol Spectr 151:939–944CrossRefGoogle Scholar
  209. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559PubMedCrossRefGoogle Scholar
  210. Sweety A, Wadhwani, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-016-7300-7
  211. Tarafdar JC, Raliya R (2013) Rapid, low-cost, and ecofriendly approach her for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nanopart. https://doi.org/10.1155/2013/141274
  212. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechnol Biol Med Nanomed 6:257–262CrossRefGoogle Scholar
  213. Thenmozhi M, Kannabiran K, Kumar R, Gopiesh KV (2013) Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. J Med Mycol 23(2):–97, 103Google Scholar
  214. Tollamadugu NVKV, Prasad T, Kambala VSR, Naidu R (2011) A critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr Nanosci 7:531–544CrossRefGoogle Scholar
  215. Torres SK, Campos VL, León CG, Rodríguez-Llamazares SG, Rojas SM, Gonzalez M, Smith C, Mondaca MA (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res 14(11):1236CrossRefGoogle Scholar
  216. Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran KR (2010) Synthesis of metal oxide nano particles by Streptomyces sp. for development of antimicrobial textiles. Global J Biotechnol Biochem 5:153–160Google Scholar
  217. Vali H, Weiss B, Li YL, Sears SK, Kim SS, Kirschvink JL, Zhang CL (2004) Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc Natl Acad Sci U S A 101(46):16121–16126PubMedPubMedCentralCrossRefGoogle Scholar
  218. Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee KJ, Kim HJ, Oh BT (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182:317–324PubMedCrossRefGoogle Scholar
  219. Vetchinkina E, Loshchinina E, Kursky V, Nikitina V (2013) Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol 51:829–835PubMedCrossRefGoogle Scholar
  220. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250PubMedCrossRefGoogle Scholar
  221. Waghmare SS, Deshmukh AM, Sadowski Z (2014) Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afr J Microbiol Res 8:138–146CrossRefGoogle Scholar
  222. Wall JD, Krumholz LR (2006) Uranium reduction. Ann Rev Microbiol 60:149–166CrossRefGoogle Scholar
  223. Wang Y, Ju Z, Cao B, Gao X, Zhu Y, Qiu P, Xu H, Pan P, Bao H, Wang L et al (2015) Ultrasensitive rapid detection of human serum antibody biomarkers by biomarker-capturing viral nanofibers. ACS Nano 9:4475–4483PubMedPubMedCentralCrossRefGoogle Scholar
  224. Watson JHP, Ellwood DC, Soper AK, Charrock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Mater 203:69–72CrossRefGoogle Scholar
  225. Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325PubMedCrossRefGoogle Scholar
  226. Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45:75–81PubMedCrossRefGoogle Scholar
  227. Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L (2016) Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine 11:1899–1906PubMedPubMedCentralGoogle Scholar
  228. Yadav V, Sharma N, Prakash R, Raina KK, Bharadwaj LM, Prakash NT (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7:299–304CrossRefGoogle Scholar
  229. Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi DY (2007) Se (VI) reduction and the precipitation of Se (0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microb 73(6):1914–1920CrossRefGoogle Scholar
  230. Zare B, Babaie S, Setayesh N, Shahverdi A (2012) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J 1:14–20Google Scholar
  231. Zeng J, Ma Y, Jeong U, Xia Y (2010) Au(I): an alternative and potentially better precursor than Au(III) for the synthesis of Au nanostructures. J Mater Chem 20:2290–2301CrossRefGoogle Scholar
  232. Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, He N, Zheng S (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290CrossRefGoogle Scholar
  233. Zhang X, He X, Wang K, Yang X (2011) Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol 7:245–254PubMedCrossRefGoogle Scholar
  234. Zhang XF, Shen W, Gurunathan S (2016) Biologically synthesized gold nanoparticles ameliorate cold and heat stress-Induced oxidative stress in Escherichia coli. Molecules 21(6):731Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mallappa Kumara Swamy
    • 1
    • 2
  • Gudepalya Renukaiah Rudramurthy
    • 3
  • Jayanta Kumar Patra
    • 4
  • Uma Rani Sinniah
    • 1
  1. 1.Department of Crop Science, Faculty of AgricultureUniversiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Padmashree Institute of Management and SciencesBengaluruIndia
  3. 3.Department of BiotechnologyEast-West College of ScienceBangaloreIndia
  4. 4.Research Institute of Biotechnology and Medical Converged ScienceDongguk UniversityGoyang-siSouth Korea

Personalised recommendations