Skip to main content

Multiple-Input Multiple-Output SAR

  • Chapter
  • First Online:
High-Resolution Microwave Imaging

Abstract

For the conventional SAR, the swath width and azimuth resolution are contradictions because of the limitations of minimum antenna area, so they cannot be improved simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher E, Haimovich A, Blum RS et al (2004) MIMO radar: an idea whose time has come. In: Proceedings of the IEEE radar conference, Philadelphia, USA, pp 71–78

    Google Scholar 

  2. Dai X (2008) Theory and method study on diversity detection and wideband synthesis for MIMO radars. Doctoral Dissertation of Electronics, Department of Tsinghua University, Beijing

    Google Scholar 

  3. Ender JHG (2007) MIMO-SAR. The technique university Hamburg, International Radar Symposium, Colonge, Germany 9, pp 580–588

    Google Scholar 

  4. Callaghan GD, Longstaff ID (1997) Wide-Swath space borne SAR and range ambiguity. In: Proceedings of RADAR 97. Edinburgh, UK, pp 248–252

    Google Scholar 

  5. Kim JH, Ossowska A, Wiesbeck W (2007) Investigation of MIMO SAR for interferometry. EURAD, Munich, Germany, pp 51–54

    Google Scholar 

  6. Li J, Zheng XY, Stoica P (2007) MIMO SAR Imaging: signal synthesis and receiver design. EURAD, Munich, Germany, pp 89–92

    Google Scholar 

  7. Ossowska A, Kim JH, Wiesbeck W (2007) Modeling of nonidealities in receiver front-end for a simulation of multistate SAR system. EUSAR, Barcelona, Spain, pp 13–16

    Google Scholar 

  8. Krieger G, Gebert N, Moreira A (2008) Multidimensional waveform encoding: a new digital beam forming technique for synthetic aperture radar remote sensing. IEEE TGRS 46(1):31–46

    Google Scholar 

  9. Song Y, Yang R (2007) Study on high resolution wide swath synthetic aperture radar using multiple transmit-receive apertures. J Electron Inf Technol 29(9):2110–2113

    Google Scholar 

  10. Xia Y (2008) Study on distributed small satellites SAR imaging technology. Doctoral Dissertation of Institute of Electronics, Chinese Academy of Sciences, Beijing

    Google Scholar 

  11. Jing W (2008) Study on wide swath high resolution imaging technology of spaceborne SAR. Doctoral Dissertation of Xian University, Xi’an

    Google Scholar 

  12. Dai X, Xu J, Peng Y (2008) MIMO-VSAR and a kind of optimized array configuration. Acta Electronica Sinica 36(12):2394–2399

    Google Scholar 

  13. Wang WQ (2007) Applications of MIMO technique for aerospace remote sensing. In: Proceedings of IEEE Aerospace Conference, Big Sky, USA, pp 1–10

    Google Scholar 

  14. Wang WQ, Cai JY (2009) Multiple-Input and Multiple-Output SAR diversified waveform design. IEEE Aerospace Conference, Big Sky, USA, pp 1051–1053

    Google Scholar 

  15. Wu Q, Jing W, Xing M (2009) Wide swath imaging with multidimensional waveform encoding. J Xian Univ 36(5):801–806

    Google Scholar 

  16. Wang L, Xu J, Huangpu k et al (2009) Analysis and compensation of equivalent phase center error in MIMO SAR. Acta Electronica Sinica 37(12):2688–2693

    Google Scholar 

  17. Liu N, Zhang L, Zhang J et al (2009) Multifrequency—multibaseline InSAR and its performance analysis. Syst Eng Electron 31(9):2090–2095

    MathSciNet  Google Scholar 

  18. Shiqiang L (2004) Study on high resolution wide swath synthetic aperture radar systems. Doctoral Dissertation of Institute of Electronics, Chinese Academy of Sciences, Beijing

    Google Scholar 

  19. Kim JH, Ossowska A, Wiesbeck W (2007) Experimental investigation of digital beam forming SAR performance using a ground-based demonstrator. IGARSS, Barcelona, Spain, pp 111–114

    Google Scholar 

  20. Kim JH, Ossowska A, Wiesbeck W (2006) Ground based measurement system for the evaluation of a SAR with digital beam forming. EUSAR, Dresden, Germany, pp 120–123

    Google Scholar 

  21. Kim JH, Ossowska A, Wiesbeck W (2007) Laboratory experiments for the evaluation of digital beam forming SAR features. 2007 international Waveform Diversity and Design Conference, Pisa, Italy, pp 292–296

    Google Scholar 

  22. Bao K, Tao H, Liao G (2007) Waveform design for multi-emitted and distributed space-based radar system. J Electron Inf Technol 29(9):2117–2119

    Google Scholar 

  23. Wang D, Yuan J, Ma X (2007) Discrete frequency coding design based on the genetic algorithm for MIMO radar. J Air Force Radar Acad 21(2):105–107

    Google Scholar 

  24. Chen CY, Vaidyanathan PP (2007) MIMO radar ambiguity optimization using frequency-hopping waveforms. In: 41th Asilomar Conference on Signals, Systems and Computers, 4, pp 192–196

    Google Scholar 

  25. Li J, Stoica P, Zhu X (2008) MIMO radar waveform synthesis. In: IEEE Proceedings, pp 2125–2130

    Google Scholar 

  26. Yuan X (2003) Introduction to spaceborne synthetic aperture radar. National Defense Industry Press, Beijing

    Google Scholar 

  27. Franceschetti G, Lanari R (1999) Synthetic aperture radar processing. CRC Press, New York

    Google Scholar 

  28. Bennett JR, Cumming I, Deane R (1980) Digital processing of SEASAT data. In: IEEE International Radar Conference, pp 168–175

    Google Scholar 

  29. Wu C, Liu KY, Jin M (1982) Modeling and a correlation algorithm for space borne SAR signals. IEEE TAES 18(5):563–575

    Google Scholar 

  30. Jin M, Wu C (1984) A SAR correlation algorithm which accommodates large range migration. IEEE TGRS 22(6):592–597

    Google Scholar 

  31. Raney RK, Runge H, Bamler R (1994) Precision SAR processing using chirp scaling. IEEE TGRS 32(4):786–799

    Google Scholar 

  32. Moreira A, Mittermayer J, Scheiber A (1996) Extended chirp scaling algorithm for air and space borne SAR data processing in strip map and scan SAR imaging modes. IEEE TGRS 34(5):1123–1136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, R. et al. (2018). Multiple-Input Multiple-Output SAR. In: High-Resolution Microwave Imaging. Springer, Singapore. https://doi.org/10.1007/978-981-10-7138-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7138-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7136-2

  • Online ISBN: 978-981-10-7138-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics