Bioenergetics and Energy Transduction



Bioenergetics is the study of the energy transactions in living systems. Gibbs free energy change (∆G) is the energy change in a system that is available to do work. A reaction/process is spontaneous and exergonic if the Gibbs free energy change (∆G) is negative, and nonspontaneous and endergonic if positive. In biosynthetic pathways, endergonic reactions like biosynthesis and active transport are driven by coupling to exergonic reactions. ATP is the energy currency coupling endergonic and exergonic reactions.


  1. Barbar J (2012) Photosystem II: the water-splitting enzyme of photosynthesis. Cold Spring Harb Symp Quant Biol 77:295–307CrossRefGoogle Scholar
  2. Berrisfor JM, Baradaran R, Sazanov LA (2014) Entire respiratory complex I from Thermus Thermophilus. Encyclopedia of inorganic and bioinorganic chemistry, pp 1–16Google Scholar
  3. Boyer PD (1995) “From human serum albumin to rotational catalysis by ATP synthase”, FASEB J., 9 (7):559–561Google Scholar
  4. Deisenhofer J, Michel H (1989) Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. The EMBO J 8(8):2149–2170Google Scholar
  5. Deisenhofer J, Eppo O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Ao. Nature 318(6047):618–624Google Scholar
  6. Doenst et al (2013) Cardiac metabolism in heart failure implications beyond ATP production. Circ Res 113:709–724Google Scholar
  7. Gorbikova E (2009) Oxygen reduction and proton translocation by cytochrome c oxidase. Academic dissertation.
  8. Hill R, Bendall F (1960) Function of the two cytochrome components in chloroplasts—a working hypothesis. Nature 186:136–137CrossRefGoogle Scholar
  9. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684. CrossRefPubMedGoogle Scholar
  10. Iverson TM (2013) Catalytic mechanisms of complex II enzymes: a structural perspective. Biochim Biophys Acta-Bioenergetics 1827(5):648–657CrossRefGoogle Scholar
  11. Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000Prime Reports, 6, 40.
  12. Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochimica et Biophysica Acta 1767:335–352Google Scholar
  13. Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1807(3):384–389.
  14. Menke W (1962) Structure and chemistry of plastids. Annu Rev Plant Physiol 13:27–44CrossRefGoogle Scholar
  15. Minagawa J (2011) State transitions—the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807 (8):897–905Google Scholar
  16. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148CrossRefPubMedGoogle Scholar
  17. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(Pt 1):1–13. CrossRefPubMedGoogle Scholar
  18. Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev 5:1–12CrossRefGoogle Scholar
  19. Nelson N, Yocum CF (2006) Structure and Function of Photosystems I and II. Ann Rev Plant Biol 57:521–565CrossRefGoogle Scholar
  20. Nield J, Barber J (2006) Refinement of the structural model for the Photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361 Google Scholar
  21. Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375–388. CrossRefPubMedGoogle Scholar
  22. Sun F et al (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057CrossRefPubMedGoogle Scholar
  23. Sun F, Zhou Q, Pang X, Xu Y, Rao Z (2013) Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Cur Opinion Struc Bio 2013(23):526–538CrossRefGoogle Scholar
  24. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144CrossRefPubMedGoogle Scholar
  25. Walker JE (2013) ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41(1):1–16.
  26. West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402.
  27. Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277:60–66CrossRefPubMedGoogle Scholar
  28. Xia D, Esser L, Tang WK, Zhou F, Zhou Y, Yu L, Yu CA (2013) Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. Biochimica et Biophysica Acta 1827:1278–1294Google Scholar
  29. Xiche Hu X, Thorsten Ritz T, Ana Damjanovic A, Felix Autenrieth F, Schulten K (2002) Photosynthetic apparatus of purple bacteria. Quart Rev Biophys 35(1):1–62Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiochemistryShivaji CollegeNew DelhiIndia
  2. 2.Department of BiochemistryDaulat Ram College, University of DelhiNew DelhiIndia

Personalised recommendations