Advertisement

Membrane Transport

Chapter

Abstract

Every living cell has to exchange molecules across the membrane for cellular functions. The hydrophobic or lipophilic molecules do not require energy for crossing the membrane. They can diffuse freely from higher to lower concentration till equilibrium is established. This process is called passive transport or diffusion.

References

  1. Cipriano DJ, Wang Y, Bond S et al (2008) Structure and regulation of the vacuolar ATPases. Biochem Biophys Acta 1777:599–604Google Scholar
  2. Cosentino K, Ros U, Garcia Saez AJ (2015) Assembling the puzzle: oligomerization of alpha pore forming protens in membrane. Biochim Biophy Acta 1858(3):457–466Google Scholar
  3. Dawson Roger JP, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185Google Scholar
  4. Deutscher J, Ake FMD, Derkaoui M et al (2014) The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78(2):231–256Google Scholar
  5. Gomes D, Agasse A, Thiebaud P et al (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica Biophysica Acta (BBA) Biomembr 1788(6):1213–1228Google Scholar
  6. Gutmann Daniel AP, Ward A, Urbatsch IL et al (2010) Understanding poly specificity of multidrug ABC transporters: closing in on the gaps in ABCB1. Trends Biochem Sci 35:36–42Google Scholar
  7. Hollenstein K, Frei DC, Locher KP (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216Google Scholar
  8. Hosaka T, Yoshizawa S, Nakajima Y et al (2008) Structural mechanism for light-driven transport by a new type of chloride ion pump, Non labens marinus rhodopsin-3. Br J Pharmacol 154(8):1680–1690Google Scholar
  9. Kelkar DA, Chattopadhay A (2007) The gramicidin ion channel: a model membrane protein. Biochimica Biophysica Acta (BBA) Biomembr 1768(9):2011–2025Google Scholar
  10. Mathie A, Al Moubarak E, Veale EL (2010) Gating of two pore domain potassium channels. J Physiol 588(17):3149–3156Google Scholar
  11. Morth JP, Pedersen BP, Buch-Pedersen MJ et al (2011) A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12:60–70Google Scholar
  12. Naftalin RJ, Nicholas Green Y, Cunninghamz P (2007) Lactose permease H1-lactose symporter: mechanical switch or brownian ratchet? Biophys J 92:3474–3491Google Scholar
  13. Palmgren MG, Nissen P (2011) P-type ATPases. Ann Rev Biophys 40:243–266Google Scholar
  14. Postma PW, Lengeler JW, Jacobson GR (2000) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57(3):543–594Google Scholar
  15. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227.  https://doi.org/10.1038/nrm2646
  16. Renigunta V, Schlichthörl G, Daut J, Arch P (2015) Much more than a leak: structure and function of K2P-channels. Eur J Physiol 467:867–894Google Scholar
  17. Tilley SJ, Saibil HR (2006) The mechanism of pore formation by bacterial toxins. Curr Opin Struct Biol 16:230–236Google Scholar
  18. Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13:259–277Google Scholar
  19. Vyklicky V, Korinek M, Smejkalova T et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(Suppl 1):S191–S203Google Scholar
  20. Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794Google Scholar
  21. Weeber EJ, Levy M, Sampson MJ et al (2002) The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 277:18891–18897Google Scholar
  22. Wilkens S (2015) Structure and mechanism of ABC transporters. F1000 Prime Rep 7:14.  https://doi.org/10.12703/P7-14
  23. Zeth K (2010) Structure and evolution of mitochondrial outer membrane proteins of β-barrel topology. Biochimica Biophysica Acta (BBA) Bioenerg 1797(6–7):1292–1299Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiochemistryShivaji CollegeNew DelhiIndia
  2. 2.Department of BiochemistryDaulat Ram College, University of DelhiNew DelhiIndia

Personalised recommendations