Inerter-Based Dynamic Vibration Absorption System

  • Michael Z. Q. ChenEmail author
  • Yinlong Hu


This chapter is concerned with the \(H_\infty \) and \(H_2\) optimization problem for inerter-based dynamic vibration absorbers (IDVAs). The proposed IDVAs are obtained by replacing the damper in the traditional dynamic vibration absorber (TDVA) with some inerter-based mechanical networks. It is demonstrated in this chapter that adding one inerter alone to the TDVA provides no benefits for the \(H_\infty \) performance and negligible improvement (less than \(0.32\%\) improvement over the TDVA when the mass ratio less than 1) for the \(H_2\) performance. This implies the necessity of introducing another degree of freedom (element) together with inerter to the TDVA. Therefore, four different IDVAs are proposed by adding an inerter together with a spring to the TDVA, and significant improvement for both the \(H_\infty \) and \(H_2\) performances is obtained. Numerical simulations in dimensionless form show that more than 20 and \(10\%\) improvement can be obtained for the \(H_\infty \) and \(H_2\) performances, respectively. Besides, for the \(H_\infty \) performance, the effective frequency band can be further widened by using inerter.


Dynamic vibration absorber IDVA \(H_\infty \) \(H_2\) optimization Dimensionless analysis 


  1. Anh, N. D., & Nguyen, N. X. (2013). Design of TMD for damped linear strucutures using the dual criterion of equivalent linearization method. International Journal of Mehcanical Sciences, 77, 164–170.CrossRefGoogle Scholar
  2. Asami, T., Wakasono, T., Kameoka, K., Hasegawa, M., & Sekiguchi, H. (1991). Optimum design of dynamic absorbers for a system subjected to random excitation. JSME International Journal Series 3, Vibration, Control Engineering, Engineering for Industry, 34(2), 218–226.CrossRefGoogle Scholar
  3. Asami, T., Nishihara, O., & Baz, A. M. (2002). Analytical solutions to \(H_\infty \) and \(H_2\) optimization of dynamic vibration absorbers attached to damped linear systems. Journal of Vibration and Acoustics, 124(2), 284–295.CrossRefGoogle Scholar
  4. Bekdas, G., & Nigdeli, S. M. (2013). Mass ratio factor for optimum tuned mass damper strategies. International Journal of Mechanical Sciences, 71, 68–84.CrossRefGoogle Scholar
  5. Brzeski, P., Pavlovskaia, E., Kapitaniak, T., & Perlikowski, P. (2014). The application of inerter in tuned mass absorber. International Journal of Non-Linear Mechanics, 70, 20–29.CrossRefGoogle Scholar
  6. Chen, M. Z. Q., Hu, Y., Huang, L., & Chen, G. (2014). Influence of inerter on natural frequencies of vibration systems. Journal of Sound and Vibration, 333(7), 1874–1887.CrossRefGoogle Scholar
  7. Cheung, Y. L., & Wong, W. O. (2009). \(H_\infty \) and \(H_2\) optimizations of a dyanmic vibration absorber for suppressing vibrations in plates. Journal of Sound and Vibration, 320, 29–42.CrossRefGoogle Scholar
  8. Cheung, Y. L., & Wong, W. O. (2011a). \(H_2\) optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force excitation. Journal of Sound and Vibration, 330(6), 1039–1044.CrossRefGoogle Scholar
  9. Cheung, Y. L., & Wong, W. O. (2011b). H-infinity optimization of a variant design of the dynamic vibration absorber-Revisited and new results. Journal of Sound and Vibration, 330(16), 3901–3912.CrossRefGoogle Scholar
  10. Crandall, S. H., & Mark, W. D. (1963). Random vibration in mechanical systems. New York: Academic Press.Google Scholar
  11. Den Hartog, J. P. (1985). Mechanical vibrations. New York, USA: Dover Publications, INC.zbMATHGoogle Scholar
  12. Doyle, J. C., Francis, B. A., & Tannenbaum, A. R. (1992). Feedback control theory. Oxford: Maxwell Macmillan Int.Google Scholar
  13. Frahm, H. (1909). Device for damping vibrations of bodies. US Patent, No. 989958. 30.Google Scholar
  14. Gao, H., Zhan, W., Karimi, H. R., Yang, X., & Yin, S. (2013). Allocation of actuators and sensors for coupled-adjacent-building vibration attenuation. IEEE Transactions on Industrial Electronics, 60(12), 5792–5801.CrossRefGoogle Scholar
  15. Ghosh, A., & Basu, B. (2007). A closed-form optimal tuning criteiron for TMD in damped structures. Structural Control and Health Monitoring, 14, 681–692.CrossRefGoogle Scholar
  16. Hixson, E. L. (1988). Mechanical impedance. In C. M. Harris (Ed.), Shock and vibration handbook (3rd ed.). New York: McGraw-Hill (ch. 10).Google Scholar
  17. Hu, Y., Chen, M. Z. Q., Shu, Z., & Huang, L. (2015). Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. Journal of Sound and Vibration, 346, 17–36.CrossRefGoogle Scholar
  18. Inman, D. J. (2008). Engineering vibration (3rd ed.). NJ: Prentice-Hall.Google Scholar
  19. Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014). Using an inerter-based device for structural vibration suppression. Earthquake Engineering and Structure Dynamics, 43(8), 1129–1147.CrossRefGoogle Scholar
  20. Marian, L., & Giaralis, A. (2014). Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics, 38, 156–164.CrossRefGoogle Scholar
  21. Miguelez, M. H., Rubio, L., Loya, J. A., & Fernandez-Saez, J. (2010). Improvement of chatter stability in boring operations with passive vibration absorbers. International Journal of Mechanical Sciences, 52(10), 1376–1384.CrossRefGoogle Scholar
  22. Nishihara, O., & Asami, T. (2002). Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors). Journal of Vibration and Acoustics, 124(4), 576–582.CrossRefGoogle Scholar
  23. Ormondroyd, J., & Den Hartog, J. P. (1928). The theory of the dynamic vibration absorber. ASME Journal of Applied Mechanics, 50, 9–22.Google Scholar
  24. Pai, P. F., & Schulz, M. J. (2000). A refined nonlinear vibration absorber. International Journal of Mechanical Sciences, 42(3), 537–560.CrossRefGoogle Scholar
  25. Shearer, J. L., Murphy, A. T., & Richardson, H. H. (1967). Introduction to system dynamics. Reading, MA: Addison-Wesley.Google Scholar
  26. Si, Y., Karimi, H. R., & Gao, H. (2014). Modelling and optimization of a passive structural control design for a spar-type floating wind turbine. Engineering Structures, 69, 168–182.CrossRefGoogle Scholar
  27. Smith, M. C. (2002). Synthesis of mechanical networks: The inerter. IEEE Transactions on Automatic Control, 47(1), 1648–1662.MathSciNetCrossRefGoogle Scholar
  28. Zhan, W., Cui, Y., Feng, Z., Cheung, K. C., Lam, J., & Gao, H. (2013). Joint optimization approach to building vibration control via multiple active tuned mass dampers. Mechatronics, 23(3), 355–368.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina
  2. 2.College of Energy and Electrical EngineeringHohai UniversityNanjingChina

Personalised recommendations