Skip to main content

Introduction

  • Chapter
  • First Online:
  • 765 Accesses

Abstract

Inerter is a new mechanical element proposed by Professor Malcolm C. Smith from Cambridge University, which is defined as a mechanical two-terminal, one-port device with the property that the equal and opposite force applied at the terminals is proportional to the relative acceleration between the terminals (Smith in IEEE Tran Autom Control 47(1):1648–1662, 2002a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alujević, N., Čakmak, D., Wolf, H., & Jokić, M. (2018). Passive and active vibration isolation systems using inerter. Journal of Sound and Vibration, 418, 163–183.

    Article  Google Scholar 

  • Anderson, B. D. O., & Vongpanitlerd, S. (1973). Network analysis and synthesis. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Bakis, K. N., Limebeer, D. J. N., Williams, M. S., & Graham, J. M. R. (2016). Passive aeroelastic control of a suspension bridge during erection. Journal of Fluids and Structures, 66, 543–570.

    Article  Google Scholar 

  • Bott, R., & Duffin, R. J. (1949). Impedance synthesis without use of transformers. Journal of Applied Physics, 20(8), 816.

    Article  MathSciNet  Google Scholar 

  • Brzeski, P., Kapitaniak, T., & Perlikowski, P. (2015). Novel type of tuned mass damper with inerter which enables changes of inertance. Journal of Sound and Vibration, 349, 56–66.

    Article  Google Scholar 

  • Brzeski, P., Pavlovskaia, E., Kapitaniak, T., & Perlikowski, P. (2015). The application of inerter in tuned mass absorber. International Journal of Non-Linear Mechanics, 70, 20–29.

    Article  Google Scholar 

  • Brzeski, P., Lazarek, M., & Perlikowski, P. (2017). Experimental study of the novel tuned mass damper with inerter which enables changes of inertance. Journal of Sound and Vibration, 404, 47–57.

    Article  Google Scholar 

  • Chen, M. Z. Q., & Smith, M. C. (2009). Restricted complexity network realizations for passive mechanical control. IEEE Transactions on Automatic Control, 54(10), 2290–2301.

    Article  MathSciNet  Google Scholar 

  • Chen, M. Z. Q., & Smith, M. C. (2009). A note on tests for positive-real functions. IEEE Transactions on Automatic Control, 54(2), 390–393.

    Article  MathSciNet  Google Scholar 

  • Chen, M. Z. Q., Papageorgiou, C., Scheibe, F., Wang, F. C., & Smith, M. C. (2009). The missing mechanical circuit element. IEEE Circuits and Systems Magazine, 9(1), 10–26.

    Article  Google Scholar 

  • Chen, M. Z. Q., Hu, Y., & Du, B. (2012). Suspension performance with one damper and one inerter. In Proceedings of the 24th Chinese Control and Decision Conference, Taiyuan, China (pp. 3551–3556).

    Google Scholar 

  • Chen, M. Z. Q., Hu, Y., Huang, L., & Chen, G. (2014). Influence of inerter on natural frequencies of vibration systems. Journal of Sound and Vibration, 333(7), 1874–87.

    Article  Google Scholar 

  • Chen, M. Z. Q., Hu, Y., Li, C., & Chen, G. (2014). Semi-active suspension with semi-active inerter and semi-active damper. IFAC Proceedings Volumes, 47(3), 11225–11230.

    Article  Google Scholar 

  • Chen, M. Z. Q., Hu, Y., & Wang, F.-C. (2015). Passive mechanical control with a special class of positive real controllers: Application to passive vehicle suspensions. Journal of Dynamic Systems, Measurement, and Control, 137(12), 121013.

    Article  Google Scholar 

  • Chen, M. Z. Q., Hu, Y., Li, C., & Chen, G. (2015). Performance benefits of using inerter in semiactive suspensions. IEEE Transactions on Control Systems Technology, 23(4), 1571–1577.

    Article  Google Scholar 

  • Chen, M. Z. Q., Hu, Y., Li, C., & Chen, G. (2016). Application of semi-active inerter in semi-active suspensions via force tracking. Journal of Vibration and Acoustics, 138(4), 041014.

    Article  Google Scholar 

  • Chen, M. Z. Q., Wang, K., Zou, Y., & Lam, J. (2013). Realization of a special class of admittances with one damper and one inerter for mechanical control. IEEE Transactions on Automatic Control, 58(7), 1841–1846.

    Article  MathSciNet  Google Scholar 

  • Chen, M. Z. Q., Wang, K., Zou, Y., & Chen, G. (2015). Realization of three-port spring networks with inerter for effective mechanical control. IEEE Transactions on Automatic Control, 60(10), 2722–2727.

    Article  MathSciNet  Google Scholar 

  • Dong, X., Liu, Y., & Chen, M. Z. Q. (2015). Application of inerter to aircraft landing gear suspension. In Proceedings of the 34th Chinese Control Conference, July 28–30, Hangzhou, China (pp. 2066–2071).

    Google Scholar 

  • Dylejko, P. G., & MacGillivray, I. R. (2014). On the concept of a transmission absorber to suppress internal resonance. Journal of Sound and Vibration, 333, 2719–2734.

    Article  Google Scholar 

  • Evangelou, S., Limebeer, D. J. N., Sharp, R. S., & Smith, M. C. (2006). Control of motorcycle steering instabilities. IEEE Control Systems Magazine, 26(5), 78–88.

    Article  Google Scholar 

  • Evangelou, S., Limebeer, D. J. N., Sharp, R. S., & Smith, M. C. (2007). Steering compensation for high-performance motorcycles. Journal of Applied Mechanics, 74(2), 332–346.

    Article  Google Scholar 

  • Frahm, H. (1909). Device for damping vibrations of bodies. U.S. Patent, No. 989958. 30.

    Google Scholar 

  • Gartner, B. J., & Smith, M. C. (2011). Damper and inertial hydraulic device. U.S. Patent 13/577, 234.

    Google Scholar 

  • Graham, J. M. R., Limebeer, D. J. N., & Zhao, X. (2011). Aeroelastic control of long-span suspension bridges. Journal of Applied Mechanics, 78(4), 041018.

    Article  Google Scholar 

  • Hanazawa, Y., Suda, H., & Yamakita, M. (2011). Analysis and experiment of flat-footed passive dynamic walker with ankle inerter. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, December 7–11, Phuket, Thailand (pp. 86–91).

    Google Scholar 

  • Hanazawa, Y., & Yamakita, M. (2012). High-efficient biped walking based on flat-footed passive dynamic walking with mechanical impedance at ankles. Journal of Robotics and Mechatronics, 24(3), 498–506.

    Article  Google Scholar 

  • Hu, Y., Li, C., & Chen, M. Z. Q. (2012). Optimal control for semi-active suspension with inerter. In Proceedings of the 31st Chinese Control Conference, Hefei, China (pp. 2301–2306).

    Google Scholar 

  • Hu, Y., & Chen, M. Z. Q. (2015). Performance evaluation for inerter-based dynamic vibration absorbers. International Journal of Mechanical Sciences, 99, 297–307.

    Article  Google Scholar 

  • Hu, Y., Wang, K., Chen, Y., & Chen, M. Z. Q. (2018). Inerter-based semi-active suspensions with low-order mechanical admittance via network synthesis. Transactions of the Institute of Measurement and Control. 0142331217744852.

    Google Scholar 

  • Hu, Y., Chen, M. Z. Q., & Shu, Z. (2014). Passive vehicle suspensions employing inerters with multiple performance requirements. Journal of Sound and Vibration, 333, 2212–2225.

    Article  Google Scholar 

  • Hu, Y., Chen, M. Z. Q., Shu, Z., & Huang, L. (2015). Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. Journal of Sound and Vibration, 346, 17–36.

    Article  Google Scholar 

  • Hu, Y., Chen, M. Z. Q., & Smith, M. C. (2018). Natural frequency assignment for mass-chain systems with inerters. Mechanical Systems and Signal Processing, 108, 126–139.

    Article  Google Scholar 

  • Hu, Y., Chen, M. Z. Q., & Sun, Y. (2017). Comfort-oriented vehicle suspension design with skyhook inerter configuration. Journal of Sound and Vibration, 405, 34–47.

    Article  Google Scholar 

  • Hu, Y., Chen, M. Z. Q., Xu, S., & Liu, Y. (2017). Semiactive inerter and its application in adaptive tuned vibration absorbers. IEEE Transactions on Control Systems Technology, 25(1), 294–300.

    Article  Google Scholar 

  • Ikago, K., Saito, K., & Inoue, N. (2012). Seismic control of SDOF structure using tuned viscous mass damper. Earthquake Engineering and Structural Dynamics, 41, 453–474.

    Article  Google Scholar 

  • Ikago, K., Sugimura, Y., Saito, K., & Inoue, K. (2012). Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass damper. Journal of Asian Architecture and Building Engineering, 11, 375–382.

    Article  Google Scholar 

  • Jiang, J. Z., Matamoros-Sanchez, A. Z., Zolotas, A., Goodall, R. M., & Smith, M. C. (2013). Passive suspensions for ride quality improvement of two-axle railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 0954409713511592.

    Google Scholar 

  • Jiang, J. Z., Matamoros-Sanchez, A. Z., Goodall, R. M., & Smith, M. C. (2012). Passive suspensions incorporating inerters for railway vehicles. Vehicle System Dynamics, 50, 263–276.

    Article  Google Scholar 

  • Lazarek, M., Brzeski, P., & Perlikowski, P. (2018). Design and identification of parameters of tuned mass damper with inerter which enables changes of inertance. Mechanism and Machine Theory, 119, 161–173.

    Article  Google Scholar 

  • Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014). Using an inerter-based device for structural vibration suppression. Earthquake Engineering and Structure Dynamics, 43(8), 1129–1147.

    Article  Google Scholar 

  • Li, P., Lam, J., & Cheung, K. C. (2014). Investigation on semi-active control of vehicle suspension using adaptive inerter. In The 21st International Congress on Sound and Vibration, Beijing, China.

    Google Scholar 

  • Li, Y., Howcroft, C., Neild, S. A., & Jiang, J. Z. (2017). Using continuation analysis to identify shimmy-suppression devices for an aircraft main landing gear. Journal of Sound and Vibration, 408, 234–251.

    Article  Google Scholar 

  • Li, Y., Jiang, J. Z., & Neild, S. (2017). Inerter-based configurations for main-landing-gear shimmy suppression. Journal of Aircraft, 54(2), 684–693.

    Article  Google Scholar 

  • Li, Y., Jiang, J. Z., Neild, S. A., & Wang, H. (2017). Optimal inerter-based shock-strut configurations for landing-gear touchdown performance. Journal of Aircraft, 54(5), 1901–1909.

    Article  Google Scholar 

  • Li, P., Lam, J., & Cheung, K. C. (2015). Control of vehicle suspension using an adaptive inerter. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(14), 1934–1943.

    Google Scholar 

  • Limebeer, D. J. N., Graham, J. M. R., & Zhao, X. (2011). Buffet suppression in long-span suspension bridges. Annual Reviews in Control, 35(2), 235–246.

    Article  Google Scholar 

  • Liu, Y., Chen, M. Z. Q., & Tian, Y. (2015). Nonlinearities in landing gear model incorporating inerter. In Proceeding of the 2015 IEEE International Conference on Information and Automation, Lijiang, China (pp. 696–701)

    Google Scholar 

  • Marian, L., & Giaralis, A. (2014). Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics, 38, 156–164.

    Article  Google Scholar 

  • Molina-Cristobal, A., Papageorgiou, C., Parks, G. T., Smith, M. C., & Clarkson, P. J. (2006). Multi-objective controller design: Evolutionary algorithms and bilinear matrix inequalities for a passive suspension. In Proceedings of the 13th IFAC Workshop on Control Applications of Optimization, Cachan-Paris, France (pp. 386–391).

    Google Scholar 

  • Ormondroyd, J., & Den Hartog, J. P. (1928). The theory of the dynamic vibration absorber. ASME Journal of Applied Mechanics, 50, 9–22.

    Google Scholar 

  • Papageorgiou, C., & Smith, M. C. (2005). Laboratory experimental testing of inerters. In Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, December 12–15 (pp. 3351–3356).

    Google Scholar 

  • Papageorgiou, C., & Smith, M. C. (2006). Positive real synthesis using matrix inequalities for mechanical networks: Application to vehicle suspension. IEEE Transactions on Control Systems Technology, 14(3), 423–435.

    Article  Google Scholar 

  • Piersol, A. G., & Paez, T. L. (2010). Harris’ shock and vibration handbook (6th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Scheibe, F., & Smith, M. C. (2009). Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions. Vehicle System Dynamics, 47(10), 1229–1252.

    Article  Google Scholar 

  • Shen, Y., Chen, L., Yang, X., Shi, D., & Yang, J. (2016). Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. Journal of Sound and Vibration, 361, 148–158.

    Article  Google Scholar 

  • Siami, A., Karimi, H. R., Cigada, A., Zappa, E., & Sabbioni, E. (2018). Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelos Rondanini Piet. Mechanical Systems and Signal Processing, 98, 667–683.

    Article  Google Scholar 

  • Smith, M. C. (2002a). Synthesis of mechanical networks: The inerter. IEEE Transactions on Automatic Control, 47(1), 1648–1662.

    Article  MathSciNet  Google Scholar 

  • Smith, M. C. (2002b). Force-controlling mechanical device. U.S. Patent 7,316,303 B2.

    Google Scholar 

  • Smith, M. C. (2003). The inerter concept and its application. Plenary Lecture, Society of Instrument and Control Engineers (SICE) Annual Conference Fukui, Japan 4 August 2003.

    Google Scholar 

  • Smith, M. C. (2008). Force-controlling mechanical device. U.S. Patent 7/316 303.

    Google Scholar 

  • Smith, M. C. (2011). Vehicle dynamics, engineering thought-experiments and Formula One racing. William Mong Distinguished Lecture, The University of Hong Kong, 13 January 2011

    Google Scholar 

  • Smith, M. C., & Wang, F.-C. (2004). Performance benefits in passive vehicle suspensions employing inerters. Vehicle System Dynamics, 42(4), 235–257.

    Article  Google Scholar 

  • Sugimura, Y., Goto, W., Tanizawa, H., Saito, K., & Nimomiya, T. (2012). Response control effect of steel building structure using tuned viscous mass damper. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.

    Google Scholar 

  • Takewaki, I., Murakami, S., Yoshitomi, S., & Tsuji, M. (2012). Fundamental mechanism of earthquake response resuction in buildind structures with inertial dampers. Journal of Structural Control and Health Monitoring, 19, 590–608.

    Article  Google Scholar 

  • Tsai, M. C., & Huang, C. C. (2011). Development of a variable-inertia device with a magnetic planetary gearbox. IEEE/ASME Transactions on mechatronics, 16(6), 1120–1128.

    Article  Google Scholar 

  • Tuluie, R. (2010). Fluid Inerter. U.S. Patent 13/575, 017.

    Google Scholar 

  • Wang, K., Chen, M. Z. Q., Li, C., & Chen, G. (2018). Passive controller realization of a biquadratic impedance with double poles and zeros as a seven-element series-parallel network for effective mechanical control. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2018.2794820 (in press).

    Article  MathSciNet  Google Scholar 

  • Wang, F.-C., Hsu, M.-S., Su, W.-J., & Lin, T. C. (2009). Screw type inerter mechanism. U.S. Patent 2009/0108510 A1.

    Google Scholar 

  • Wang, R., Meng, X., Shi, D., Zhang, X., Chen, Y., & Chen, L. (2014). Design and test of vehicle suspension system with inerters. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1–6.

    Google Scholar 

  • Wang, F.-C., & Chan, H.-A. (2011). Vehicle suspensions with a mechatronic network strut. Vehicle System Dynamics, 49(5), 811–830.

    Article  Google Scholar 

  • Wang, F.-C., Hong, M. F., & Chen, C. W. (2010). Building suspensions with inerters. Proceedings of the IMechE, Part C: Journal of Mechanical Engineering Science, 224(8), 1605–1616.

    Article  Google Scholar 

  • Wang, F.-C., Hong, M. F., & Lin, T. C. (2011). Designing and testing a hydraulic inerter. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1), 66–72.

    Google Scholar 

  • Wang, F.-C., Hsieh, M.-R., & Chen, H.-J. (2012). Stability and performance analysis of a full-train system with inerters. Vehicle System Dynamics, 50(4), 545–571.

    Article  Google Scholar 

  • Wang, F.-C., & Liao, M.-K. (2010). The lateral stability of train suspension systems employing inerters. Vehicle System Dynamics, 8(5), 619–643.

    Article  Google Scholar 

  • Wang, F.-C., Liao, M. K., Liao, B. H., Su, W. J., & Chan, H. A. (2009). The performance improvements of train suspension systems with mechanical networks employing inerters. Vehicle System Dynamics, 47(7), 805–830.

    Article  Google Scholar 

  • Wang, F.-C., & Su, W.-J. (2008). Impact of inerter nonlinearities on vehicle suspension control. Vehicle System Dynamics, 46(7), 575–595.

    Article  Google Scholar 

  • Yamamoto, K., & Smith, M. C. (2016). Bounded disturbance amplification for mass chains with passive interconnection. IEEE Transactions on Automatic Control, 61(6), 1565–1574.

    Article  MathSciNet  Google Scholar 

  • Zhang, X. L., Zhang, T., Nie, J., & Chen, L. (2018). A semiactive skyhook-inertance control strategy based on continuously adjustable inerter. Shock and Vibration, 6828621.

    Google Scholar 

  • Zhang, X. J., Ahmadian, M., & Guo, K. H. (2012). On the benefits of semi-active suspensions with inerters. Shock and Vibration, 19(3), 257–272.

    Article  Google Scholar 

  • Zhang, X. L., Liu, J. J., Nie, J. M., & Chen, L. (2014). Design principle and method of a passive hybrid damping suspension system. Applied Mechanics and Materials, 635–637, 1232–1240.

    Article  Google Scholar 

  • Zhao, X., Gouder, K., Graham, J. M. R., & Limebeer, D. J. (2016). Buffet loading, dynamic response and aerodynamic control of a suspension bridge in a turbulent wind. Journal of Fluids and Structures, 62, 384–412.

    Article  Google Scholar 

  • Zilletti, M. (2016). Feedback control unit with an inerter proof-mass electrodynamic actuator. Journal of Sound and Vibration, 369, 16–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Z. Q. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press, Beijing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, M.Z.Q., Hu, Y. (2019). Introduction. In: Inerter and Its Application in Vibration Control Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-7089-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7089-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7088-4

  • Online ISBN: 978-981-10-7089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics