Advertisement

Clinical Applications of Continuous Glucose Monitoring Reports and Management Systems

  • L. Zhang
  • W. JiaEmail author
Chapter

Abstract

Continuous glucose monitoring (CGM) requires a standardized report format. The standardized CGM report should include the target range of blood glucose control, blood glucose control level, glycemic variability parameters, hypoglycemia, hyperglycemia, and others. The Chinese clinical guideline for CGM recommended a standardized format and content for CGM reports for clinical use. Currently, a number of software programs are used to calculate glycemic variability parameters. However, the algorithms among these software programs are not unified, resulting in different calculation results. The Chinese version of the CGM Report Management Software can generate CGM reports including various glycemic variability parameters and CGM graphs. This system helps to further promote the rational application of CGM in China.

Keywords

Continuous glucose monitoring Management system Computer software 

References

  1. 1.
    Mazze RS, Strock E, Wesley D, Borgman S, Morgan B, Bergenstal R, Cuddihy R. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technol Ther. 2008;10:149–59.  https://doi.org/10.1089/dia.2007.0293.CrossRefPubMedGoogle Scholar
  2. 2.
    Bergenstal RM, Ahmann AJ, Bailey T, Beck RW, Bissen J, Buckingham B, Deeb L, Dolin RH, Garg SK, Goland R, Hirsch IB, Klonoff DC, Kruger DF, Matfin G, Mazze RS, Olson BA, Parkin C, Peters A, Powers MA, Rodriguez H, Southerland P, Strock ES, Tamborlane W, Wesley DM. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the Ambulatory Glucose Profile (AGP). Diabetes Technol Ther. 2013;15:198–211.  https://doi.org/10.1089/dia.2013.0051.CrossRefPubMedGoogle Scholar
  3. 3.
    Brewer KW, Chase HP, Owen S, Garg SK. Slicing the pie. Correlating HbA–values with average blood glucose values in a pie chart form. Diabetes Care. 1998;21:209–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Rodbard D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol Ther. 2009;11:551–65.  https://doi.org/10.1089/dia.2009.0015.CrossRefPubMedGoogle Scholar
  5. 5.
    Rodbard D. Hypo- and hyperglycemia in relation to the mean, standard deviation, coefficient of variation, and nature of the glucose distribution. Diabetes Technol Ther. 2012;14:868–76.  https://doi.org/10.1089/dia.2012.0062.CrossRefPubMedGoogle Scholar
  6. 6.
    Rodbard D. Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther. 2009;11(Suppl 1):55–67.  https://doi.org/10.1089/dia.2008.0132.CrossRefGoogle Scholar
  7. 7.
    American Diabetes Association. 6. Glycemic targets. Diabetes Care. 2017;40(Suppl 1):48–56.  https://doi.org/10.2337/dc17-S009.CrossRefGoogle Scholar
  8. 8.
    International Hypoglycaemia Study Group. Glucose concentrations of less than 3.0 mmol/L (54 mg/dL) should be reported in clinical trials: a joint position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2017;40:155–7.  https://doi.org/10.2337/dc16-2215.CrossRefGoogle Scholar
  9. 9.
    Chinese Diabetes Society. Chinese clinical guideline for continuous glucose monitoring (2012). Chin J Diabetes Mellitus. 2012;4:582–90.  https://doi.org/10.3760/cma.j.issn.1674-5809.2012.10.003.CrossRefGoogle Scholar
  10. 10.
    Zhou J, Jia WP. Assessment methods and research progress of glycemic variability. Clin J Endocrinol Metab. 2010;26:261–4.  https://doi.org/10.3760/cma.j.issn.1000-6999.2010.03.028.CrossRefGoogle Scholar
  11. 11.
    Zhou J, Jia WP. The significance and clinical assessment of glycemic variability. Zhonghua Yi Xue Za Zhi. 2006;86:2154–7.  https://doi.org/10.3760/j:issn:0376-2491.2006.30.020.CrossRefGoogle Scholar
  12. 12.
    Neylon OM, Baghurst PA, Cameron FJ. The minimum duration of sensor data from which glycemic variability can be consistently assessed. J Diabetes Sci Technol. 2014;8:273–6.  https://doi.org/10.1177/1932296813519011.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hill NR, Oliver NS, Choudhary P, Levy JC, Hindmarsh P, Matthews DR. Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther. 2011;13:921–8.  https://doi.org/10.1089/dia.2010.0247.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Czerwoniuk D, Fendler W, Walenciak L, Mlynarski W. GlyCulator: a glycemic variability calculation tool for continuous glucose monitoring data. J Diabetes Sci Technol. 2011;5:447–51.  https://doi.org/10.1177/193229681100500236.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mo YF, Zhou J, Jia WP. Clinical significance and research progress of parameters for assessing glycemic variability–mean amplitude of glycemic excursion. Clin J Diabetes Mellitus. 2011;3:259–63.  https://doi.org/10.3760/cma.j.issn.1674-5809.2011.03.016.CrossRefGoogle Scholar
  16. 16.
    Fritzsche G, Kohnert KD, Heinke P, Vogt L, Salzsieder E. The use of a computer program to calculate the mean amplitude of glycemic excursions. Diabetes Technol Ther. 2011;13:319–25.  https://doi.org/10.1089/dia.2010.0108.CrossRefPubMedGoogle Scholar
  17. 17.
    Baghurst PA. Calculating the mean amplitude of glycemic excursion from continuous glucose monitoring data: an automated algorithm. Diabetes Technol Ther. 2011;13:296–302.  https://doi.org/10.1089/dia.2010.0090.CrossRefPubMedGoogle Scholar
  18. 18.
    Sechterberger MK, Luijf YM, Devries JH. Poor agreement of computerized calculators for mean amplitude of glycemic excursions. Diabetes Technol Ther. 2014;16:72–5.  https://doi.org/10.1089/dia.2013.0138.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhou J, Li H, Ran X, Yang W, Li Q, Peng Y, Li Y, Gao X, Luan X, Wang W, Jia W. Establishment of normal reference ranges for glycemic variability in Chinese subjects using continuous glucose monitoring. Med Sci Monit. 2011;17:CR9–13.  https://doi.org/10.12659/MSM.881318.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mo Y, Zhou J, Li M, Wang Y, Bao Y, Ma X, Li D, Lu W, Hu C, Li M, Jia W. Glycemic variability is associated with subclinical atherosclerosis in Chinese type 2 diabetic patients. Cardiovasc Diabetol. 2013;12:15.  https://doi.org/10.1186/1475-2840-12-15.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang L, Zhou J, Lu W, Bao YQ, Jia WP. Establishment and clinical applications of continuous glucose monitoring report and management system. Clin J Diabetes Mellitus. 2012;4:754–5.  https://doi.org/10.3760/cma.j.issn.1674-5809.2012.12.012.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers 2018

Authors and Affiliations

  1. 1.Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University, Affiliated Sixth People’s HospitalShanghaiChina

Personalised recommendations