Skip to main content

Optimal Planning of Grid Reinforcement with Demand Response Control

  • Chapter
  • First Online:
Electric Distribution Network Planning

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter presents a hybrid methodology based on a local search algorithm and a genetic algorithm, used to address the multi-objective and multistage optimal distribution expansion planning problem. The methodology is conceived to solve optimal network investment problems under the new possibilities enabled by the smart grid, namely the new observability and controllability investments that will be available to enable demand response in the future. The multi-objective methodology is applied to an existing low-voltage electric distribution network under a congestion scenario to yield a Pareto-optimal set of solutions. The solutions are then projected onto the two investment possibilities considered: demand control investments and traditional network asset investments. The projected surface is then analyzed to discuss the merit of demand control with respect to postponing traditional asset investments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this value is relatively small and was chosen for demonstration purposes. The typical size of a genetic algorithm population is several tens or even hundreds of individuals.

  2. 2.

    For N projects, meaningful values of the crossover point are in the range of 2 to N-1.

References

  1. M.V.F. Pereira, L.M.V.G. Pinto, S.H. Cunha, G.C. Oliveira, A decomposition approach to automated generation transmission expansion planning. IEEE Trans. Power Syst. PAS-104(11), 3074–3083 (1985)

    Google Scholar 

  2. R. Romero, A. Monticelli, A Hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)

    Article  Google Scholar 

  3. R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning. IEEE Trans. Power Syst. 9(3), 1385–1391 (1994)

    Article  Google Scholar 

  4. G.C. Oliveira, A.P.C. Costa, S. Binato, Large scale transmission network planning using optimization and heuristic techniques. IEEE Trans. Power Syst. 10(4), 1828–1833 (1995)

    Article  Google Scholar 

  5. R. Romero, R.A. Gallego, A. Monticelli, Transmission expansion planning by simulated annealing. IEEE Trans. Power Syst. 11(1), 364–369 (1996)

    Article  Google Scholar 

  6. H. Rudnick, R. Palma, E. Cura, C. Silva, Economically adapted transmission systems in open access schemes—application of genetic algorithms. IEEE Trans. Power Syst. 11(3), 1427–1440 (1996)

    Article  Google Scholar 

  7. R.A. Gallego, A. Monticelli, R. Romero, Comparative studies on non-convex optimization methods for transmission network expansion planning. IEEE Trans. Power Syst. 13(3), 822–828 (1998)

    Article  Google Scholar 

  8. X. Wang, Y. Mao, Improved genetic algorithm for optimal multistage transmission system planning. IEEE (2001)

    Google Scholar 

  9. L.L. Garver, Transmission network estimation using linear programming. IEEE Trans. Power Syst. PAS-89(1), 1688–1697 (1970)

    Article  Google Scholar 

  10. A. Monticelli, A. Santos, M.V.F. Pereira, S.H. Cunha, B.J. Parker, J.C.G. Praça, Interactive transmission network planning using a least-effort criterion. IEEE Trans. Power App. Syst. PAS-101(10), 3919–3925 (1982)

    Article  Google Scholar 

  11. M.V.F. Pereira, L.M.V.G. Pinto, S.H. Cunha, G.C. Oliveira, A decomposition approach to automated generation/transmission expansion planning. IEEE Trans. Power Syst. PAS-104(11), 3074–3083 (1985)

    Google Scholar 

  12. R. Romero, A. Monticelli, A hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)

    Article  Google Scholar 

  13. R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning. IEEE Trans. Power Syst. 9(3), 1385–1391 (1994)

    Article  Google Scholar 

  14. G.C. Oliveira, A.P.C. Costa, S. Binato, Large scale transmission network planning using optimization and heuristic techniques. IEEE Trans. Power Syst. 10(4), 1828–1833 (1995)

    Article  Google Scholar 

  15. A. Escobar, R.A. Gallego, R. Romero, Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans. Power Syst. 19(2), 735–744 (2004)

    Article  Google Scholar 

  16. H. Rudnick, R. Palma, E. Cura, C. Silva, Economically adapted transmission systems in open access schemes—application of genetic algorithms. IEEE Trans. Power Syst. 11(3), 1427–1440 (1996)

    Article  Google Scholar 

  17. S. Binato, M.V. Pereira, S. Granville, A new benders decomposition approach to solve power transmission design problems. IEEE Trans. Power Syst. 16(2), 235–240 (2001)

    Article  Google Scholar 

  18. R. Romero, R.A. Gallego, A. Monticelli, Transmission expansion planning by simulated annealing. IEEE Trans. Power Syst. 11(1), 364–369 (1996)

    Article  Google Scholar 

  19. E.L. Silva, J.M.A. Ortiz, G.C. Oliveira, S. Binato, Transmission network expansion planning under a tabu search approach. IEEE Trans. Power Syst. 16(1), 62–1440 (2001)

    Article  Google Scholar 

  20. S. Binato, G.C. Oliveira, J.L. Araújo, A greedy randomized adaptive search procedure for transmission expansion planning. IEEE Trans. Power Syst. 16(2), 247–253 (2001)

    Article  Google Scholar 

  21. J. Contreras, F.F. Wu, A kernel-oriented algorithm for transmission expansion planning. IEEE Trans. Power Syst. 15(4), 1434–1440 (2000)

    Article  Google Scholar 

  22. M. Pinedo, Scheduling—Theory, Algorithms, and Systems (Prentice Hall, 1995). ISBN 0-13-706757-7

    Google Scholar 

  23. F.S. Reis, M. Pinto, P.M.S. Carvalho, L.A.F.M. Ferreira, Short-Term Investment Scheduling in Transmission Power Systems by Evolutionary Computation—DRPT2000 (London, April 2000)

    Google Scholar 

  24. F.S. Reis, P.M.S. Carvalho, L.A.F.M. Ferreira, Combining gauss and genetic algorithms for multi-objective transmission expansion planning. WSEAS Trans. Syst. 3(1), 206–209 (2004)

    Google Scholar 

  25. F.S. Reis, P.M.S. Carvalho, L.A.F.M. Ferreira, Reinforcement scheduling convergence in power systems transmission planning. IEEE Trans. Power Syst. 20(2), 1151–1157 (2005)

    Article  Google Scholar 

  26. A. Dias, P.M.S. Carvalho, P. Almeida, S. Rapoport, Multi-objective distribution planning approach for optimal network investment with EV charging control, in Presented at PowerTech 2015 (June 2015) [Online], Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7232674

  27. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. F. Dias .

Editor information

Editors and Affiliations

Appendix

Appendix

The notations used throughout this chapter are listed below:

f j :

Objective function j

P :

Set of investment projects

O :

Set of orders for project analysis (population)

p i :

Project i of P

o k :

Order k of O (individual of the population)

t i :

Timing of project p i , \(t_{i} \in \left\{ {1,2, \ldots ,T + 1} \right\}\)

\(\overline{t}\) :

Decision schedule: indexed array of timings t i for projects p i

N :

Number of projects

T :

Number of stages of the planning horizon

G :

Graph of the electric distribution network

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias, A.M.F., Carvalho, P.M.S. (2018). Optimal Planning of Grid Reinforcement with Demand Response Control. In: Shahnia, F., Arefi, A., Ledwich, G. (eds) Electric Distribution Network Planning. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-7056-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7056-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7055-6

  • Online ISBN: 978-981-10-7056-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics