Advertisement

Optimal Allocation of Automatic Reclosers

  • Carlos Frederico Meschini Almeida
  • Gabriel Albieri Quiroga
  • Henrique Kagan
  • Nelson Kagan
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

This chapter presents a methodology for the allocation of Automatic Reclosers (AR) in medium voltage electric distribution networks. The methodology defines strategic positions for installing Normally Closed (NC) and Normally Opened (NO) reclosers to improve the system’s performance in terms of quality of power supply. The restriction relies on the budget available for investing in purchasing and installing AR. The methodology supports power distribution planning activities, as it focusses on defining the optimal positions for installing reclosers in a large network. Due to the size of the electric distribution networks considered during planning activities, hundreds different positions for installing Normally-Opened Automatic Reclosers (NO-AR) and Normally-Closed Automatic Reclosers (NC-AR) must be assessed. To deal with the size of the problem, covering all states the network may assume and assuring the positions for installing AR were optimum ones, the proposed methodology divides this problem into three states. Through this approach, the planning engineer need to carry out several simulations in just a few minutes, evaluating the technical benefits achieved from different investment levels. Similar approaches could not be found in the current literature. The methodology was assessed considering two substations of a Brazilian electric distribution company, corresponding to twenty-five medium voltage feeders. Two analyses were carried out: the brown field analysis, where the positions of thirty new automatic reclosers were determined; and the green field analysis, where forty-five existing automatic reclosers were reallocated. The results indicate significant improvements in quality of service indices, which may reach over 30% reduction level.

Keywords

Electric distribution planning Genetic algorithms Electric distribution reliability Automatic reclosers Power quality 

References

  1. 1.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989)Google Scholar
  2. 2.
    G. Levitin, S. Mazal-Tov, D. Elmakis, Genetic algorithm for optimal sectionalizing in radial distribution systems with alternative supply. Electr. Power Syst. Res. 35(3) (1995)Google Scholar
  3. 3.
    R. Billinton, S. Jonnavithula, Optimal switching device placement in radial distribution systems. IEEE Trans. Power Deliv. 11(3) (1996)Google Scholar
  4. 4.
    F. Soudi, K. Tomsovic, Optimal distribution protection design: quality of solution and computational analysis. Int. J. Electr. Power Energy Syst. 21(5) (1999)Google Scholar
  5. 5.
    G. Celli, F. Pilo, Optimal sectionalizing switches allocation in distribution networks. IEEE Trans. Power Deliv. 14(3) (1999)Google Scholar
  6. 6.
    F. Soudi, K. Tomsovic, Optimal trade-offs in distribution protection design. IEEE Trans. Power Deliv. 16(2) (2001)Google Scholar
  7. 7.
    J.H. Teng, C.N. Lu, Feeder-switch relocation for customer interruption cost minimization. IEEE Trans. Power Deliv. 17(1) (2002)Google Scholar
  8. 8.
    J.H. Teng, Y.H. Liu, A novel ACS-based optimum switch relocation method. IEEE Trans. Power Syst. 18(1) (2003)Google Scholar
  9. 9.
    M.R. Haghifam, Optimal allocation of tie points in radial distribution systems using a genetic algorithm. Eur. Trans. Electr. Energy Syst. (2004)Google Scholar
  10. 10.
    L.G.W. Silva, R.A.F. Pereira, J.R.S. Mantovani, Allocation of protective devices in distribution circuits using nonlinear programming models and genetic algorithms. Electr. Power Syst. Res. 69(1) (2004)Google Scholar
  11. 11.
    D.H. Popovic, J.A. Greatbanks, M. Begovic, A. Pregelj, Placement of distributed generators and reclosers for distribution network security and reliability. Int. J. Electr. Power Energy Syst. 27(5–6) (2005)Google Scholar
  12. 12.
    C.S. Chen, C.H. Lin, H.J. Chuang, C.S. Li, M.Y. Huang, C.W. Huang, Optimal placement of line switches for distribution automation systems using immune algorithm. IEEE Trans. Power Syst. 21(3) (2006)Google Scholar
  13. 13.
    V.C. Zamborlini, D.R. Trindade, E. Zambon, B.B. Garcia, E.F Azeredo, Otimização da Alocação de Religadores em Larga Escala; II CBEE - Congresso Brasileiro de Eficiência Energética (Vitória/ES, Brazil, 2007)Google Scholar
  14. 14.
    A. Moradi, M.F. Firuzabad, Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm. IEEE Trans. Power Deliv. 23(1) (2008)Google Scholar
  15. 15.
    L.G.W. Silva, R.A.F. Pereira, J.R. Abbad, J.R.S. Mantovani, Optimised placement of control and protective devices in electric distribution systems through reactive Tabu search algorithm. Electr. Power Syst. Res. 78(3) (2008)Google Scholar
  16. 16.
    A. Helseth, A.T. Holen, Impact of energy end use and customer interruption cost on optimal allocation of switchgear in constrained distribution networks. IEEE Trans. Power Deliv. 23(3) (2008) Google Scholar
  17. 17.
    H. Falaghi, M.R. Haghifam, C. Singh, Ant colony optimization-based method for placement of sectionalizing switches in distribution networks using a fuzzy multiobjective approach. IEEE Trans. Power Deliv. 24(1) (2009)Google Scholar
  18. 18.
    W. Tippachon, D. Rerkpreedapong, Multiobjective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization. Electr. Power Syst. Res. 79(7) (2009)Google Scholar
  19. 19.
    N. Kagan, C.C.B. Oliveira, E.J. Robba, Introdução aos Sistemas de Distribuição de Energia Elétrica. 2ª Edição (Editora Edgard Blucher, 2010)Google Scholar
  20. 20.
    C.C.B. Oliveira, D. Takahata, M. Maia, Metodologia de Alocação Otimizada de Dispositivos de Proteção em Alimentadores Baseada no Desempenho Máximo do Alimentador (DMA). IX CBQEE - Conferência Brasileira sobre Qualidade da Energia Elétrica (Cuiabá/MT, Brazil, 2011)Google Scholar
  21. 21.
    D.P. Bernardon, M. Sperandio, V.J. Garcia, J. Russia, L.N. Canhab, A.R. Abaideb, E.F.B. Daza, Methodology for allocation of remotely controlled switches in distribution networks based on a fuzzy multi-criteria decision-making algorithm. Electr. Power Syst. Res. 81(2) (2011)Google Scholar
  22. 22.
    D.P. Bernardon, M. Sperandio, V.J. Garcia, L.N. Canha, A.R. Abaide, E.F.B. Daza, AHP decision-making algorithm to allocate remotely controlled switches in distribution networks. IEEE Trans. Power Deliv. 26(3) (2011)Google Scholar
  23. 23.
    A.A. Jahromi, M.F. Firuzabad, M. Parvania, M. Mosleh, Optimized sectionalizing switch placement strategy in distribution systems. IEEE Trans. Power Deliv. 27(1) (2012)Google Scholar
  24. 24.
    L.S. Assis, J.F.V. González, F.L. Usberti, C. Lyra, C. Cavellucci, F.J. Von Zuben, Switch allocation problems in power distribution systems. IEEE Trans. Power Syst. 30(1) (2015)Google Scholar
  25. 25.
    J.C. López, J.F. Franco, M.J. Rider, Optimisation-based switch allocation to improve energy losses and service restoration in radial electrical distribution systems. IET Gener. Transm. Distrib. 10(11) (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Carlos Frederico Meschini Almeida
    • 1
  • Gabriel Albieri Quiroga
    • 1
  • Henrique Kagan
    • 2
  • Nelson Kagan
    • 1
  1. 1.Escola PolitecnicaUniversidade de Sao PauloSao PauloBrazil
  2. 2.Sinapsis Inovacao em EnergiaSao PauloBrazil

Personalised recommendations